Full-Length BARD1 Mediates Aurora B Degradation, Cancer-Associated BARD1B Scaffolds Aurora B and BRCA2

Total Page:16

File Type:pdf, Size:1020Kb

Full-Length BARD1 Mediates Aurora B Degradation, Cancer-Associated BARD1B Scaffolds Aurora B and BRCA2 Published OnlineFirst January 27, 2009; DOI: 10.1158/0008-5472.CAN-08-2134 Research Article Distinct Roles of BARD1 Isoforms in Mitosis: Full-Length BARD1 Mediates Aurora B Degradation, Cancer-Associated BARD1B Scaffolds Aurora B and BRCA2 Stephan Ryser,1,2 Eva Dizin,1,2 Charles Edward Jefford,1,2 Be´ne´dicte Delaval,3 Sarantis Gagos,4 Agni Christodoulidou,4 Karl-Heinz Krause,2 Daniel Birnbaum,3 and Irmgard Irminger-Finger1,2 1Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics and 2Department of Medical Genetics and Laboratory Medicine, University Hospitals Geneva, Geneva, Switzerland; 3Laboratoire d’Oncologie Mole´culaire, Centre de Recherche en Cance´rologiede Marseille, UMR891 Inserm-Institut Paoli-Calmettes, Marseille, France; and 4Laboratory of Genetics, Foundation of Biomedical Research, Academy of Athens, Athens, Greece Abstract NH2 terminal RING finger domains (4), and either Bard1 or Brca1 The BRCA1-associated ring domain protein 1 (BARD1) deletion induces breast cancer in tissue-specific conditional interacts with BRCA1 via its RING finger domain. The knockout mice (5). BARD1 is the major protein-binding partner BARD1-BRCA1 complex participates in DNA repair, cell cycle of BRCA1, with whom it forms a stable heterodimer and acts in control, genomic stability, and mitotic spindle formation tumor suppressor functions but has also BRCA1-independent through its E3 ubiquitin ligase activity. Cancer cells express functions in apoptosis (6, 7). The BARD1-BRCA1 heterodimer is an severalBARD1 protein isoforms, includingthe RING finger– E3 ubiquitin ligase implicated in DNA repair and homologous deficient variant BARD1B. Here, we show that BARD1 has recombination (8, 9), centrosome duplication (10), and mitotic BRCA1-dependent and BRCA1-independent functions in spindle assembly (11), which are essential functions for maintain- mitosis. BARD1, but not BRCA1, localizes to the midbody at ing genomic stability (10, 12). telophase and cytokinesis, where it colocalizes with Aurora B. During S-phase, BRCA1, BRCA2, and BARD1 are partially The 97-kDa full-length (FL) BARD1 coimmunoprecipates with colocalized to distinct nuclear dots (13, 14). During mitosis, BRCA1 BRCA1, but the 82-kDa BARD1B coimmunoprecipitates with localizes to spindle poles (15), and BRCA2 localizes to the midbody Aurora B and BRCA2. We used selective small interfering RNAs during telophase and cytokinesis, wherein it is involved in to distinguish the functions of FL BARD1 and BARD1B. contractile ring and midbody formation and completion of Depletion of FL BARD1 had only minor effects on cell growth cytokinesis (16). Depletion of BRCA2 impedes abscission of the and did not abolish midbody localization of BARD1 staining, midbody and cell separation (16), providing an explanation for the but resulted in massive up-regulation of Aurora B. In contrast, genetic instability observed in cancers associated with mutations suppression of FL BARD1 and BARD1B led to growth arrest in BRCA2. Midbody formation and abscission are also controlled by and correlated with various mitotic defects and disappearance the microtubule-binding protein transforming acidic coiled coil– of midbody localization of BARD1 staining. Our data suggest a containing protein 1 (TACC1) and the mitotic kinase Aurora B (17). novelfunction of FL BARD1 in Aurora B ubiquitination and TACC1 was reported to interact with BARD1 in Caenorhabditis degradation, opposing a proproliferative function of BARD1B elegans (18). BARD1 expression is up-regulated during mitosis (19), in scaffolding Aurora B and BRCA2. Thus, loss of FL BARD1 presumably due to phosphorylation by cyclin-dependent kinase/ and up-regulation of Aurora B, as observed in cancer cells, can cyclin complexes (20), but its subcellular localization during be explained by an imbalance of FL BARD1 and BARD1B. mitosis has not been investigated. [Cancer Res 2009;69(3):1125–34] The mitotic functions of BRCA1 and BARD1 (11) could explain why normal proliferating cells are not viable without BRCA1 or BARD1. However, mouse trophoblast giant cells, which Introduction undergo endomitosis, a nuclear division not followed by cell Breast and ovarian cancers with mutations in BRCA1 and BRCA2 division, are not affected in the Bard1 knockout mouse (3), show a severe genomic instability phenotype (1). Genomic suggesting that the lethal phenotype of BARD1 depletion is linked instability and a premalignant phenotype are also features of to a function at exit of mitosis, similar to functions attributed BRCA1-associated ring domain protein 1 (BARD1)–deficient cells to BRCA2 (16). (2), causing early embryonic death of BARD1 knockout mice (3). A genetic link between BRCA2 and BARD1 was found with the BARD1 and BRCA1 form a stable heterodimer via their respective BRCA2 mutation 999del5, which, when combined with the BARD1 variant Cys557Ser, results in 100% probability for developing breast and/or ovarian cancer for carriers of the BRCA2 999del5/BARD1 Cys557Ser double mutation (21). Thus, BRCA2 and BARD1 might Note: Supplementary data for this article are available at Cancer Research Online act in a common pathway. (http://cancerres.aacrjournals.org/). Whereas mutations in BARD1 are rare in cancers (7), aberrant S. Ryser and E. Dizin contributed equally. Requests for reprints: Irmgard Irminger-Finger, University Hospitals Geneva (HUG), up-regulation of isoforms is associated with poor prognosis in Blvd de la Cluse, Geneva, CH-1211, Geneva, Switzerland. Phone: 41-22-382-4327; Fax: breast and ovarian cancer (22, 23). We found aberrantly expressed, 41-22-382145; E-mail: [email protected]. I2009 American Association for Cancer Research. differentially spliced BARD1 isoforms, which lack the BRCA1- doi:10.1158/0008-5472.CAN-08-2134 interacting RING finger, in breast, ovarian, and endometrial cancer www.aacrjournals.org 1125 Cancer Res 2009; 69: (3). February 1, 2009 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2009 American Association for Cancer Research. Published OnlineFirst January 27, 2009; DOI: 10.1158/0008-5472.CAN-08-2134 Cancer Research cells (23, 24) and human cytotrophoblasts (25). Repression of these on a logarithmic scale after determining the cell number along the isoforms in cancer cells that lack full-length (FL) BARD1 led to exponential phase and calculating the mean population-doubling time. growth arrest (23), which suggests that BRCA1-independent Immunofluorescence microscopy. Cells were fixed with 2% parafor- proproliferative, presumably mitotic, functions are retained in maldehyde for 15 min at room temperature (RT) or with methanol for 6 min at À20jC and rinsed in acetone for 30 s. Paraformaldehyde-fixed cells were cancer-associated BARD1 isoforms. permeabilized in 1% Triton/PBS for 15 min at RT and then blocked in 1% We therefore designed this study to understand the different serum/PBS for 30 min. Coverslides were incubated with appropriate roles of FL BARD1 and cancer-associated isoforms in mitosis. We antibodies for 1 h at RT in 1% FCS/PBS, washed, and stained with 4¶,6- show that FL BARD1 and the RING finger–deficient p82 isoform diamidino-2-phenylindole for 3 min. Coverslips were mounted using BARD1h have different functions and protein-protein interaction fluorogard solution and analyzed under a Nikon epifluorescence micro- properties. FL BARD1 interacts with BRCA1 and is involved in scope, and images were captured with a 3.3-megapixel CCD camera. Images Aurora B ubiquitination and degradation during mitosis. In were processed with Metamorph software (Visitron). Primary antibodies contrast, BARD1h stabilizes Aurora B and forms a complex with used were BRCA1 (Ab-1; Calbiochem), BARD1 (H-300; Santa Cruz), BARD1 BRCA2 and Aurora B, proteins known to be involved in midbody (BL518; Bethyl Laboratories), Aurora B (AIM-1; BD Biosciences). PVC was formation (16, 17). These findings establish an unexpected link reported previously (2). Antibody p25 was produced in rabbits against between BARD1 and Aurora B and BRCA2, which are aberrantly peptide sequence MVAVPGTVAPRC encoded in alternative open reading frame (ORF) of exon 1. Antibody specificity was probed in inversed ELISAs overexpressed or mutated in cancer. We suggest a molecular with different peptides and on human cancer cell lines (data not shown). pathway that explains the function of FL BARD1 as tumor Immunoprecipitation and Western blot. Protein lysates used for suppressor together with BRCA1 and loss of FL BARD1, but up- immunoprecipitation were prepared from HeLa cells, unsynchronized and regulated expression of RING finger–deficient isoforms with synchronized in G1-S or G2-M. At 24 h after plating, cells were arrested in S proproliferative functions, in cancer. phase using 2 mmol/L thymidine for 18 h, released from the arrest for 9 h, arrested a second time using thymidine (2 mmol/L) for 18 h (G1-S), and released from the arrest for 5 h (G2-M). Materials and Methods Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer [50 mmol/L Tris (pH 8), 150 mmol/L NaCl, 2 mmol/L EDTA, 0.5% NP40, Plasmid constructs. BRCA1 and BARD1 small interfering RNA (siRNA) 10% glycerol] supplemented with protease inhibitors (complete EDTA-free, constructs were generated by annealing complementary oligonucleotides Roche Applied Science). Protein concentrations were determined by the and inserting them into the pSuperScript vector as BglII/HindIII fragment: Bradford procedure (Bio-Rad). Lysates containing 400 Ag of protein were human BRCA1-siRNA
Recommended publications
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • TACC1–Chtog–Aurora a Protein Complex in Breast Cancer
    Oncogene (2003) 22, 8102–8116 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc TACC1–chTOG–Aurora A protein complex in breast cancer Nathalie Conte1,Be´ ne´ dicte Delaval1, Christophe Ginestier1, Alexia Ferrand1, Daniel Isnardon2, Christian Larroque3, Claude Prigent4, Bertrand Se´ raphin5, Jocelyne Jacquemier1 and Daniel Birnbaum*,1 1Department of Molecular Oncology, U119 Inserm, Institut Paoli-Calmettes, IFR57, Marseille, France; 2Imaging Core Facility, Institut Paoli-Calmettes, Marseille, France; 3E229 Inserm, CRLC Val d’Aurelle/Paul Lamarque, Montpellier, France; 4Laboratoire du cycle cellulaire, UMR 6061 CNRS, IFR 97, Faculte´ de Me´decine, Rennes, France; 5Centre de Ge´ne´tique Mole´culaire, Gif-sur-Yvette, France The three human TACC (transforming acidic coiled-coil) metabolism, including mitosis and intracellular trans- genes encode a family of proteins with poorly defined port of molecules, is progressing but many components functions that are suspected to play a role in oncogenesis. remain to be discovered and characterized. We describe A Xenopus TACC homolog called Maskin is involved in here the interaction of the TACC1 protein with several translational control, while Drosophila D-TACC interacts protein partners that makes it a good candidate to with the microtubule-associated protein MSPS (Mini participate in microtubule-associated processes in nor- SPindleS) to ensure proper dynamics of spindle pole mal and tumoral cells. microtubules during cell division. We have delineated here In
    [Show full text]
  • Loss of BCL-3 Sensitises Colorectal Cancer Cells to DNA Damage, Revealing A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454995; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Loss of BCL-3 sensitises colorectal cancer cells to DNA damage, revealing a role for BCL-3 in double strand break repair by homologous recombination Authors: Christopher Parker*1, Adam C Chambers*1, Dustin Flanagan2, Tracey J Collard1, Greg Ngo3, Duncan M Baird3, Penny Timms1, Rhys G Morgan4, Owen Sansom2 and Ann C Williams1. *Joint first authors. Author affiliations: 1. Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK 2. Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden Glasgow, G61 1BD UK 3. Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK 4. School of Life Sciences, University of Sussex, Sussex House, Falmer, Brighton, BN1 9RH UK 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454995; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract (250 words) Objective: The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC) and increased expression of the gene correlates with poor patient prognosis. The aim is to investigate whether inhibiting BCL-3 can increase the response to DNA damage in CRC.
    [Show full text]
  • Identification and Characterization of Missense Alterations in the BRCA1
    633 ORIGINAL ARTICLE Identification and characterization of missense alterations in the BRCA1 associated RING domain (BARD1) gene in breast and ovarian cancer M K Sauer, I L Andrulis ............................................................................................................................... J Med Genet 2005;42:633–638. doi: 10.1136/jmg.2004.030049 Background: BRCA1 associated RING domain protein (BARD1) was originally identified due to its interaction with the RING domain of BRCA1. BARD1 is required for S phase progression, contact inhibition and normal nuclear division, as well as for BRCA1 independent, p53 dependent apoptosis. See end of article for Methods: To investigate whether alterations in BARD1 are involved in human breast and ovarian cancer, authors’ affiliations ....................... we used single strand conformation polymorphism analysis and sequencing on 35 breast tumours and cancer cell lines and on 21 ovarian tumours. Correspondence to: Results: Along with the G2355C (S761N) missense mutation previously identified in a uterine cancer, we Dr M K Sauer, Samuel Lunenfeld Research found two other variants in breast cancers, T2006C (C645R) and A2286G (I738V). The T2006C (C645R) Institute, Mount Sinai mutation was also found in one ovarian tumour. A variant of uncertain consequence, G1743C (C557S), Hospital, 600 University was found to be homozygous or hemizygous in an ovarian tumour. Eleven variants of BARD1 were Ave, Toronto, Ontario, M5G 1X5, Canada; characterised with respect to known functions of BARD1. None of the variants appears to affect [email protected] localisation or interaction with BRCA1; however, putative disease associated alleles appear to affect the stability of p53. These same mutations also appear to abrogate the growth suppressive and apoptotic Received activities of BARD1.
    [Show full text]
  • Functional Characterization of Full-Length BARD1 Strengthens Its
    Journal of Cancer 2020, Vol. 11 1495 Ivyspring International Publisher Journal of Cancer 2020; 11(6): 1495-1504. doi: 10.7150/jca.36164 Research Paper Functional characterization of full-length BARD1 strengthens its role as a tumor suppressor in neuroblastoma Flora Cimmino1,2, Marianna Avitabile1,2, Vito Alessandro Lasorsa1,2, Lucia Pezone1, Antonella Cardinale1, Annalaura Montella2, Sueva Cantalupo3, Achille Iolascon1,2, Mario Capasso1,2,3 1. Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy 2. CEINGE Biotecnologie Avanzate, Naples, Italy 3. IRCCS SDN, Naples, Italy Corresponding author: Flora Cimmino, phD, University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Napoli Italy. Lab: +39 0813737736; Fax: +39 0813737804; Email: [email protected] © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.04.29; Accepted: 2019.11.12; Published: 2020.01.14 Abstract BARD1 is associated with the development of high-risk neuroblastoma patients. Particularly, the expression of full length (FL) isoform, FL BARD1, correlates to high-risk neuroblastoma development and its inhibition is sufficient to induce neuroblastoma cells towards a worst phenotype. Here we have investigated the mechanisms of FL BARD1 in neuroblastoma cell lines depleted for FL BARD1 expression. We have shown that FL BARD1 expression protects the cells from spontaneous DNA damage and from damage accumulated after irradiation. We demonstrated a role for FL BARD1 as tumor suppressor to prevent unscheduled mitotic entry of DNA damaged cells and to lead to death cells that have bypassed cell cycle checkpoints.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review TACC1 (transforming, acidic coiled-coil containing protein 1) Ivan Still, Melissa R Eslinger, Brenda Lauffart Department of Biological Sciences, Arkansas Tech University, 1701 N Boulder Ave Russellville, AR 72801, USA (IS), Department of Chemistry and Life Science Bartlett Hall, United States Military Academy, West Point, New York 10996, USA (MRE), Department of Physical Sciences Arkansas Tech University, 1701 N Boulder Ave Russellville, AR 72801, USA (BL) Published in Atlas Database: December 2008 Online updated version : http://AtlasGeneticsOncology.org/Genes/TACC1ID42456ch8p11.html DOI: 10.4267/2042/44620 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity Note: - AK304507 and AK303596 sequences may be suspect Other names: Ga55; DKFZp686K18126; KIAA1103 (see UCSC Genome Bioinformatics Site HGNC (Hugo): TACC1 (http://genome.ucsc.edu) for more details. - Transcript/isoform nomenclature as per Line et al, Location: 8p11.23 2002 and Lauffart et al., 2006. TACC1F transcript Note: This gene has three proposed transcription start includes exon 1, 2 and 3 (correction to Fig 6 of Lauffart sites beginning at 38763938 bp, 38733914 bp, et al., 2006). 38705165 bp from pter. Pseudogene DNA/RNA Partially processed pseudogene: - 91% identity corresponding to base 596 to 2157 of Description AF049910. The gene is composed of 19 exons spanning 124.5 kb. Location: 10p11.21. Location base pair: starts at 37851943 and ends at Transcription 37873633 from pter (according to hg18-March_2006).
    [Show full text]
  • BRCA1–BARD1 Regulates Axon Regeneration in Concert with the Gqα–DAG Signaling Network
    Research Articles: Cellular/Molecular BRCA1–BARD1 regulates axon regeneration in concert with the Gqα–DAG signaling network https://doi.org/10.1523/JNEUROSCI.1806-20.2021 Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.1806-20.2021 Received: 13 July 2020 Revised: 20 January 2021 Accepted: 5 February 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Sakai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Sakai et al., 1 1 BRCA1–BARD1 regulates axon regeneration in 2 concert with the GqD–DAG signaling network 3 4 Abbreviated Title: BRCA1–BARD1 regulates axon regeneration 5 6 Yoshiki Sakai, Hiroshi Hanafusa, Tatsuhiro Shimizu, Strahil Iv. 7 Pastuhov, Naoki Hisamoto, and Kunihiro Matsumoto 8 9 Division of Biological Science, Graduate School of Science, Nagoya University, 10 Chikusa-ku, Nagoya 464-8602, Japan 11 12 To whom correspondence should be addressed: 13 Kunihiro Matsumoto and Naoki Hisamoto 14 Division of Biological Science, Graduate School of Science, 15 Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. 16 E-mail address: [email protected] (K.
    [Show full text]
  • BARD1 in Cell Life and Death
    Role of BARD1 in cell life and death Irmgard Irminger-Finger Biology of Aging Laboratory Department of Geriatrics University of Geneva Switzerland Age is the biggest risk factor for cancer DePinho, 2000 Cancer Risks for Men prostate From1950 1990 Cancer Risks for Women breast From1950 1990 Cancers of old age are different from young age cancers Cancer in old age has a different face than cancer in young age BCC Basal cell carcinoma SCC Squamous cell carcinoma DePinho, 2000 What could link epithelial cell derived cancers to aging? BARD1, not just another cancer predisposition gene Common pathways for cancer and aging? Accumulation of damage DNA damage DNA damage proliferation- DNA damage arrest repair senescence proliferation cancer elimination apoptosis Cellular aging BARD1 Summary • BARD1 structure • BARD1 repression studies • BARD1 overexpression studies • BARD1 dynamic localization • BARD1 induced upon stress • Non-correlated expression of BARD1 and BRCA1 • Role in spermatogenesis • BARD1 upregulation upon stress • Role in tumorigenesis • BARD1 a tumor antigen • BARD1 in cancer vaccine and genetherapy Conserved structures in BARD1 and BRCA1 Q>H RING ANK BRCT BARD1 66 95 53 97 77 91 conservation RING BRCT BRCA1 C>G No one like BARD1 RING ANK BRCT BARD1 BRCA1 Arabidopsis 2 hypoth.p. Arabidopsis CAC05430 C. elegans 3 hypoth. p. C. elegans 6 hypoth. p. C. elegans T15564 C. elegans T15566 Xenopus BARD1 Joukov, Livingston, PNAS, 2001 BRCA1 BARD1- BRCA1 heterodimer Rad51 PCNA ? RNA-Pol II p53 BAP1 Nuclear localization BACH1 RHA signals Granin BRCA2 motif BARD1 interaction Ankyrin repeats BRCT BRCA1 domain interaction Ubiquitin-ligase Polyadenylation activity A B C D BARD1 BRCA1 BARD1 BRCA1 BARD1 Bcl-3 Pol II/Holo CstF-50 NF-kB Replication? S-phase dots Transcription: mRNA Regulation of Pol II/Holo Interaction Processing? transcription? [Scully et al.
    [Show full text]
  • Hyaluronan Mediated Motility Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis, Mitosis, and Meiosis Regulator Rather Than a Hyaluronan Receptor
    cells Review Hyaluronan Mediated Motility Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis, Mitosis, and Meiosis Regulator Rather than a Hyaluronan Receptor 1 1 1, 1,2, Zhengcheng He , Lin Mei , Marisa Connell y and Christopher A. Maxwell * 1 Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; [email protected] (Z.H.); [email protected] (L.M.); [email protected] (M.C.) 2 Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada * Correspondence: [email protected]; Tel.: +1-6048752000 (ext. 4691) Current position: Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, y NY 13210, USA. Received: 3 March 2020; Accepted: 25 March 2020; Published: 28 March 2020 Abstract: Hyaluronan is an extracellular matrix component that absorbs water in tissues and engages cell surface receptors, like Cluster of Differentiation 44 (CD44), to promote cellular growth and movement. Consequently, CD44 demarks stem cells in normal tissues and tumor-initiating cells isolated from neoplastic tissues. Hyaluronan mediated motility receptor (HMMR, also known as RHAMM) is another one of few defined hyaluronan receptors. HMMR is also associated with neoplastic processes and its role in cancer progression is often attributed to hyaluronan-mediated signaling. But, HMMR is an intracellular, microtubule-associated, spindle assembly factor that localizes protein complexes to augment the activities of mitotic kinases, like polo-like kinase 1 and Aurora kinase A, and control dynein and kinesin motor activities. Expression of HMMR is elevated in cells prior to and during mitosis and tissues with detectable HMMR expression tend to be highly proliferative, including neoplastic tissues.
    [Show full text]
  • Isomerization of BRCA1-BARD1 Promotes Replication Fork Protection
    University of Birmingham Isomerization of BRCA1-BARD1 promotes replication fork protection Daza-Martin, Manuel; Starowicz, Katarzyna; Jamshad, Mohammed; Tye, Stephanie; Ronson, George E; MacKay, Hannah L; Chauhan, Anoop Singh; Walker, Alexandra K; Stone, Helen R; Beesley, James F J; Coles, Jennifer L; Garvin, Alexander J; Stewart, Grant S; McCorvie, Thomas J; Zhang, Xiaodong; Densham, Ruth M; Morris, Joanna R DOI: 10.1038/s41586-019-1363-4 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Daza-Martin, M, Starowicz, K, Jamshad, M, Tye, S, Ronson, GE, MacKay, HL, Chauhan, AS, Walker, AK, Stone, HR, Beesley, JFJ, Coles, JL, Garvin, AJ, Stewart, GS, McCorvie, TJ, Zhang, X, Densham, RM & Morris, JR 2019, 'Isomerization of BRCA1-BARD1 promotes replication fork protection', Nature, vol. 571, no. 7766, pp. 521-527. https://doi.org/10.1038/s41586-019-1363-4 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 11/07/2019 https://www.nature.com/articles/s41586-019-1363-4 Daza-Martin, Manuel, et al. "Isomerization of BRCA1–BARD1 promotes replication fork protection." Nature (2019): 1. https://doi.org/10.1038/s41586-019-1363-4 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]
  • TACC-Ling Microtubule Dynamics and Centrosome Function
    Review The TACC proteins: TACC-ling microtubule dynamics and centrosome function Isabel Peset1 and Isabelle Vernos1,2 1 Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), University Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain 2 Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain A major quest in cell biology is to understand the Transforming acidic coiled-coil (TACC) proteins emerged molecular mechanisms underlying the high plasticity initially as a group of proteins implicated in cancer. The of the microtubule network at different stages of the first member of the TACC family to be discovered was cell cycle, and during and after differentiation. Initial identified in a search of genomic regions that are amplified reports described the centrosomal localization of in breast cancer. It was named transforming acidic coiled- proteins possessing transforming acidic coiled-coil coil 1 (TACC1) because of its highly acidic nature, the (TACC) domains. This discovery prompted several presence of a predicted coiled-coil domain at its C terminus groups to examine the role of TACC proteins during cell (now known as the TACC domain), and its ability to division, leading to indications that they are important promote cellular transformation [6]. TACC proteins are players in this complex process in different organisms. present in different organisms, ranging from yeasts to Here, we review the current understanding of the role of mammals. There is only one TACC protein in the nema- TACC proteins in the regulation of microtubule tode Caenorhabditis elegans (TAC-1), in Drosophila mel- dynamics, and we highlight the complexity of centro- anogaster (D-TACC), in Xenopus laevis (Maskin), and some function.
    [Show full text]