An Uml Activities Diagrams Translation Into Event B

Total Page:16

File Type:pdf, Size:1020Kb

An Uml Activities Diagrams Translation Into Event B AN UML ACTIVITIES DIAGRAMS TRANSLATION INTO EVENT B SUPPORTING THE SPECIFICATION AND THE VERIFICATION OF WORKFLOW APPLICATION MODELS From UML Activities Diagrams to Event B Leila Jemni Ben Ayed, Najet Hamdi and Yousra Bendaly Hlaoui Research Unit of Technologies of Information and Communication UTIC ESSTT 5, Avenue Taha Hussein, P.B. 56, Bab Menara, 1008 Tunis, Tunisia Keywords: Specification, Verification, UML, Event B, Workflow applications. Abstract: This paper exposes the transformation of UML activity diagrams into Event B for the specification and the verification of parallel and distributed workflow applications. With this transformation, UML models could be verified by verifying derived event B models. The design is initially expressed graphically with UML and translated into Event B. The resulting model is then enriched with invariants describing dynamic properties such as deadlock freeness, livelock freeness and reachability. The approach uses activity diagrams meta- model. 1 INTRODUCTION matical foundation for software. They increase the quality of distributed and parallel applications devel- Distributed and parallel applications are characterized opment and perform the reliability of the applications. by a high complexity. Increasingly, they became om- Regarding to the UML’s drawbacks and to the ca- nipresent in critical calculation domain. These ap- pacity of the formal methods to defeat such incon- plications need great care in their development and venient, it would be better to integrate formal method their implementation. They require an adequate soft- in the modeling process with UML. In this context, ware specification technique and a suitable develop- we provide a specification and verification technique ment method. The used specification formalisms need for workflow applications using UML activity dia- to be comprehensive, allowing communication be- grams (UML AD) and the event B method. The dis- tween developers and customers, expressive, and pre- tributed and parallel workflow application is initially cise. The semi-formal language UML (Jacobson and modeled graphically with an UML activity diagram. Booch, 1998) has become a standard notation for de- After that, the resulting graphical model is translated scribing analysis and design models of complex soft- into an Event B model. This allows developers to rig- ware systems. Developers and their customers intu- orously verify UML specifications by analyzing de- itively grasp the general structure of a model and thus rived B specifications. This paper addresses transla- have good basis for discussing system requirements. tion in event B of UML AD. The approach focus on UML is widely used for domain such as telecom- the activity diagrams meta-model (Group, 2003), we munications (Holz, 1997) and distributed web appli- transform different UML AD’s constructs their opera- cation (Conallen, 1999). Recently, UML has been tional semantic. The resulting model is then enriched used for modeling parallel and distributed applica- with invariants describing required properties to be tions (Pllana and Fahring, 2002). However, the fact checked (Safety, reachability, liveness) with a B tool. that UML lacks a precise semantic is a serious draw- Proof obligations are produced from events in order back of UML-based techniques. The implementation to state that the invariant condition is preserved in the of UML specifications often drags of important lee- initialization and by each event. The verification of way due to a wrong interpretation of these specifica- activity diagrams properties is done by analyzing de- tions. On the other hand, formal methods, including rived Event B specification; if these proofs succeed event B method that we deal with here, are the mathe- we can state that the graphical model is verified. This Jemni Ben Ayed L., Hamdi N. and Bendaly Hlaoui Y. (2010). 329 AN UML ACTIVITIES DIAGRAMS TRANSLATION INTO EVENT B SUPPORTING THE SPECIFICATION AND THE VERIFICATION OF WORKFLOW APPLICATION MODELS - From UML Activities Diagrams to Event B. In Proceedings of the 5th International Conference on Software and Data Technologies, pages 329-332 DOI: 10.5220/0003013003290332 Copyright c SciTePress ICSOFT 2010 - 5th International Conference on Software and Data Technologies paper is structured as follows. Section 2 presents the Rule 1. An activity diagram is translated into a B kernel of our proposal, it presents the proposed ap- model. proach UML AD and Event B. Section 3 discusses ActivityNode can be described by their type (ac- the interest of this approach for the verification and tion node, initial node, decision node .) and an at- the validation of distributed and parallel applications. tribute id to verify their uniqueness, consequently. This abstract class can be seen as a description of a set of objects identified by two attributes: id and 2 THE PROPOSED APPROACH type. We suggested so to translate an abstract class ActivityNode into an abstract set and all the derived classes are transformed into data included in this ab- The purpose of our approach is to produce a B spec- stract set. The most appropriate B expression is the B ification from a giving UML AD in order to verify record (Abrial, 1996). and check its dynamic properties (Bjorner, 1987) such as deadlock freeness. The proposed translation gives rec(ident1 : x;ident2 : y;;identn : t) not only a syntactical translation, but also a formal Where (x;y;::t;E1;E2;;EN) are respectively the semantic using the Event B method semantic. Conse- values and type of fields (ident1;ident2;identn). Since quently, we have to focus both on the activity diagram the derived nodes are identified by their identifier and and its meta-model in order to have a coherent trans- their type, we propose to specify two fields for the lation (Vidal, 2006). record: field Idnode to identify the node and field and Type to indicate its type. The abstract class is so trans- UML Activity Diagram + Meta‐model lated into the following B record: Identification of the static part of the resulting B specification by applying rules. Nodes = Struct(Id − node : integer;Type : String). Identification of the dynamic part of In that manner, each node is considered as the resulting B specification Step1 data record of Nodes and then is translated into B specification representing the Informal description of activity diagram. required properties. rec(Id = a;Type = b). Description of required properties in the Event B model. B constraints have to be proved on the obtained specification. Rule 2. The abstract class ActivityNode is trans- lated into a B record: Nodes = Struct(Id − node : Introduction of invariants describing required properties in the Event B model. Step2 integer;Type : String), in the clause DEFINITION of B specification representing the activity diagram and properties describing UML AD correctness. the B model, and having as elements the different Proving those properties using a B tool (B4free). nodes defined in the activity diagram that we aim to translate. The nodes are then translated into vari- Figure 1: Overview of the translation process. ables nodei, declared in the VARIABLES clause and typed in the INVARIANT clause: nodei 2 Nodes. The translation process illustrated in 1, proceeds The abstract class ActivityEdge is related with in three steps. The first one consists of identifying the the class ActivityNode by two relations: target body of the B specification from an UML AD by ap- and source. Hence, each edge has only one target plying a set of rules divided into structural rules and node and one source node. Besides to this relation, semantics ones. The second step enriches the result- the activity diagrams meta-model specifies other ing model by relevant properties that will be proved relation with the class ValueSpeci fication : guard, to in the third step using a B prover (Pllana and Fahring, indicate that an edge is carrying tokens or not. We 2002). The verification of these properties ensures the propose so to specify four fields to describe those correctness and the validation of the UML AD. relations:Id-edge, Id-source, Id-target and Ready to indicate if the edge is carrying tokens or not. 2.1 The Translation Approach: Step1 Rule 3. The abstract class ActivityEdge is translated The main goal of this step 1 is to translate an activity into a B record: Edges = (Idedge : integer;idsource : diagram into a B specification, this translation deals integer;Idt arget : integer;ready : boolean), declared with both the syntactical and semantics of UML in the clause DEFINITION of the B model, and hav- AD. The syntactical translation is based on the UML ing as elements the different edges defined in the ac- Activity diagram and its meta-model. We associate tivity diagram that we aim to translate. The edges to each activity diagram concept a translation rule are then translated into variables edgei, declared in describing its equivalent construction in event B. the VARIABLES clause and typed in the INVARIANTS clause: arci 2 Edges. 330 AN UML ACTIVITIES DIAGRAMS TRANSLATION INTO EVENT B SUPPORTING THE SPECIFICATION AND THE VERIFICATION OF WORKFLOW APPLICATION MODELS - From UML Activities Diagrams to Event B SYSTEM Mdl0Model0 DEFINITIONS Nodes==struct (id_node:I NTE GER ,T ype:IN TEG ER); Edges==struct(Id_node:INTEGER,Id_source:INTEGER, Id_target: INTEGER,ready:BOOL) EventFinal= SELECT (∃ x(x.( x∈Edges ∧ xxId’Id_ C= N ∧ xxready’ready=True)) THEN VARIABLES node1, node2, arc1 a12’ready:=False… END INVARIANTS node1∈Nodes ∧ node2∈Nodes ∧ arc1∈Edges INITIALIZATION nod1de1, nod2de2:= rec(1, AN), rec(2, AN)||arc 1:=rec(112FALSE)(1,1,2,FALSE); Rule 6. A final node N is interpreted as an event B having as structure: SELECT guard THEN substi- tutions END, where the guard consists of the predi- 0 0 The semantics translation focuses on the meaning cate Q = 9x(x 2 Edges ^ x Idt arget = N ^ x ready = of each concept. An action node is being executing True), while its substitutions denote the disabling of when all its incoming control and data tokens are all the edges.
Recommended publications
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • Introduction to Systems Modeling Languages
    Fundamentals of Systems Engineering Prof. Olivier L. de Weck, Mark Chodas, Narek Shougarian Session 3 System Modeling Languages 1 Reminder: A1 is due today ! 2 3 Overview Why Systems Modeling Languages? Ontology, Semantics and Syntax OPM – Object Process Methodology SySML – Systems Modeling Language Modelica What does it mean for Systems Engineering of today and tomorrow (MBSE)? 4 Exercise: Describe the “Mr. Sticky” System Work with a partner (5 min) Use your webex notepad/white board I will call on you randomly We will compare across student teams © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 5 Why Systems Modeling Languages? Means for describing artifacts are traditionally as follows: Natural Language (English, French etc….) Graphical (Sketches and Drawings) These then typically get aggregated in “documents” Examples: Requirements Document, Drawing Package Technical Data Package (TDP) should contain all info needed to build and operate system Advantages of allowing an arbitrary description: Familiarity to creator of description Not-confining, promotes creativity Disadvantages of allowing an arbitrary description: Room for ambiguous interpretations and errors Difficult to update if there are changes Handoffs between SE lifecycle phases are discontinuous Uneven level of abstraction Large volume of information that exceeds human cognitive bandwidth Etc…. 6 System Modeling Languages Past efforts
    [Show full text]
  • UML Model to Fault Tree Model Transformation for Dependability
    ! ! UML Model to Fault Tree Model Transformation for Dependability Analysis ! ! ! ! ! by Zhao Zhao ! ! ! ! ! A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of ! ! ! ! Master of Applied Science in Electrical and Computer Engineering ! ! ! ! ! Department of System and Computer Engineering Carleton University Ottawa, ON, Canada ! ! ! ! ! August 2014 ©Copyright2014, Zhao Zhao ! ! !I ACKNOWLEDGEMENT I would like to express my thank to all those who helped me during the writing of this thesis. My deepest gratitude goes first and foremost to my thesis supervisor, Prof. Dorina Petriu. It was only through her valuable supervision and patient guidance that I was able to complete all the work of this thesis. I would also like to thank my family, my father and my mother, and all my friends for their continuous support and encouragement. ! ! ! ! ! ! ! ! !II ABSTRACT Model-Driven Development (MDD) is a software development paradigm that has shifted the focus of software development from code to models. MDD’s emphasis on mod- els facilitates also the derivation of analysis models for different software non-functional properties (NFPs) from the software design models. Such analysis models are based on dif- ferent formalisms, and can be used to verify the NFPs of the software under development starting in the early lifecycle stages. This thesis proposes a model transformation to automatically generate Fault Tree models from UML models annotated with dependability annotations. Fault tree analysis is a top down deductive failure analysis model using both qualitative and quantitative analysis of undesired events of a system. It is used in safety and reliability engineering.
    [Show full text]
  • Executable Statemachines
    Enterprise Architect User Guide Series Executable StateMachines How to simulate State models? In Sparx Systems Enterprise Architect, Executable StateMachines provide complete language-specific implementations to rapidly generate, execute and simulate complex State models on multiple software products and platforms. Author: Sparx Systems Date: 21/12/2018 Version: 1.0 CREATED WITH Table of Contents Executable StateMachines 4 Executable StateMachine Artifact 9 Modeling Executable StateMachines 13 Code Generation for Executable StateMachines 25 Debugging Execution of Executable StateMachines 37 Execution and Simulation of Executable StateMachines 41 Example: Simulation Commands 43 Example: Simulation in HTML with JavaScript 58 CD Player 60 Regular Expression Parser 68 Entering a State 71 Example: Fork and Join 86 Example: Deferred Event Pattern 93 Example: Entry and Exit Points (Connection Point References) 103 Example: History Pseudostate 110 Example Executable StateMachine 125 User Guide - Executable StateMachines 21 December, 2018 Executable StateMachines Executable StateMachines provide a powerful means of rapidly generating, executing and simulating complex state models. In contrast to dynamic simulation of State Charts using Enterprise Architect's Simulation engine, Executable StateMachines provide a complete language-specific implementation that can form the behavioral 'engine' for multiple software products on multiple platforms. Visualization of the execution uses and integrates seamlessly with the Simulation capability. Evolution of the model now presents fewer coding challenges. The code generation, compilation and execution is taken care of by Enterprise Architect. For those having particular requirements, each language is provided with a set of code templates. Templates can be customized by you to tailor the generated code in any ways you see fit. These topics introduce you to the basics of modeling Executable StateMachines and tell you how to generate and simulate them.
    [Show full text]
  • Modeling Event-Based Communication in Component-Based Software Architectures for Performance Predictions
    Journal on Software and Systems Modeling manuscript No. (will be inserted by the editor) Modeling Event-based Communication in Component-based Software Architectures for Performance Predictions Christoph Rathfelder1, Benjamin Klatt1, Kai Sachs2, Samuel Kounev3? 1 FZI Research Center for Information Technology Karlsruhe, Germany frathfelder; [email protected] 2 SAP AG Walldorf, Germany [email protected] 3 Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany [email protected] Received: date / Revised version: date Abstract Event-based communication is used in dif- 1 Introduction ferent domains including telecommunications, transporta- tion, and business information systems to build scal- The event-based communication paradigm is used in- able distributed systems. Such systems typically have creasingly often to build loosely-coupled distributed sys- stringent requirements for performance and scalability as tems in many different industry domains. The applica- they provide business and mission critical services. While tion areas of event-based systems range from distributed the use of event-based communication enables loosely- sensor-based systems up to large-scale business infor- coupled interactions between components and leads to mation systems [24]. Compared to synchronous com- improved system scalability, it makes it much harder for munication using, for example, remote procedure calls developers to estimate the system's behavior and perfor- (RPC), event-based communication among components mance under load due to the decoupling of components promises several benefits such as high scalability and ex- and control flow. In this paper, we present our approach tendability [25]. Being asynchronous in nature, it allows enabling the modeling and performance prediction of a send-and-forget approach, i.e., a component that sends event-based systems at the architecture level.
    [Show full text]
  • Tackling Design Patterns Chapter 10: UML State Diagrams Copyright C 2016 by Linda Marshall and Vreda Pieterse
    Department of Computer Science Tackling Design Patterns Chapter 10: UML State Diagrams Copyright c 2016 by Linda Marshall and Vreda Pieterse. All rights reserved. Contents 10.1 Introduction ................................. 2 10.2 Notational Elements ............................ 2 10.2.1 State Nodes . 2 10.2.2 Transition edges . 3 10.2.3 Control Nodes . 4 10.2.4 Actions . 5 10.2.5 Signals . 5 10.2.6 Composite States . 6 10.3 Examples ................................... 6 10.4 Exercises ................................... 7 References ....................................... 8 1 10.1 Introduction UML State diagrams are used to describe the behaviour of nontrivial objects. State diagrams are good for describing the behaviour of one object over time and are used to identify object attributes and to refine the behaviour description of an object. A state is a condition in which an object can be at some point during its lifetime, for some finite period of time [4]. State diagrams describe all the possible states a particular object can get into and how the objects state changes as a result of external events that reach the object [1]. The notation for state diagrams was first introduced by Harel [2], and then adopted by UML. 10.2 Notational Elements A UML State diagram is a graph in the mathematical sense of the word. It is a diagram consisting of nodes and edges. The nodes can assume a variety of forms each with specific meaning, while the edges are labeled arrows connecting these nodes. In Section 10.2.1 we discuss the basic nodes. The basic nodes are called state nodes. In Section 10.2.2 we discuss the syntax for the edges.
    [Show full text]
  • Case No COMP/M.4747 Œ IBM / TELELOGIC REGULATION (EC)
    EN This text is made available for information purposes only. A summary of this decision is published in all Community languages in the Official Journal of the European Union. Case No COMP/M.4747 – IBM / TELELOGIC Only the English text is authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 8(1) Date: 05/03/2008 Brussels, 05/03/2008 C(2008) 823 final PUBLIC VERSION COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) (Only the English text is authentic) (Text with EEA relevance) THE COMMISSION OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Community, Having regard to the Agreement on the European Economic Area, and in particular Article 57 thereof, Having regard to Council Regulation (EC) No 139/2004 of 20 January 2004 on the control of concentrations between undertakings1, and in particular Article 8(1) thereof, Having regard to the Commission's decision of 3 October 2007 to initiate proceedings in this case, After consulting the Advisory Committee on Concentrations2, Having regard to the final report of the Hearing Officer in this case3, Whereas: 1 OJ L 24, 29.1.2004, p. 1 2 OJ C ...,...200. , p.... 3 OJ C ...,...200. , p.... 2 I. INTRODUCTION 1. On 29 August 2007, the Commission received a notification of a proposed concentration pursuant to Article 4 and following a referral pursuant to Article 4(5) of Council Regulation (EC) No 139/2004 ("the Merger Regulation") by which the undertaking International Business Machines Corporation ("IBM", USA) acquires within the meaning of Article 3(1)(b) of the Council Regulation control of the whole of the undertaking Telelogic AB ("Telelogic", Sweden) by way of a public bid which was announced on 11 June 2007.
    [Show full text]
  • The UML Profile for Communicating Systems DRAFT October 18, 2004
    The UML Profile for Communicating Systems DRAFT October 18, 2004 Copyright © 1997-2003 ETSI. IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSIÂSRÂ000Â314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp). All published ETSI deliverables shall include information which directs the reader to the above source of information. This Technical Specification (TS) has been produced by ETSI Technical Committee. How to Read this Specification 2 Acknowledgements 2 Overview 5 Methodological Aspects 5 Class Diagram 6 State Machine Diagram 7 Composite Structure Diagram 8 Relationship Between Diagrams 9 Overview 5 Active Class 5 Description 5 Attributes 5 Constraints 5 Semantics 5 Notation 5 Passive Class 5 Description 5 Attributes 5 Constraints 6 Semantics 6 Notation 6 Interface 6 Description 6 Constraints 6 Semantics 6 Notation 6 Signal 6 Description 6 Attributes 6 Semantics 6 Notation 7 Directed Association 7 Description 7 Attributes 7 Constraints 7 Semantics 7 Notation 7 Composition 7 Description 7 Attributes 7 xxx 7 Constraints 7 Semantics 8 UML Profile for Communicating Systems 1 Notation 8 Generalisation 8 Description 8 Attributes 8 Constraints 8 Semantics
    [Show full text]
  • Modelling and Transformation of Non-Functional Annotations
    Modelling and Transformation of Non-Functional Annotations Modelling and Transformation of Non-Functional Annotations Jorge Ibarra Delgado School of Computer Science University of St. Andrews June 24, 2015 1/32 Modelling and Transformation of Non-Functional Annotations Context Plan 1 Context Introduction Objectives 2 PlantNF 3 PlantNF-to-UPPAAL Transformation Tool 2/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Modelling An abstract description of an artefact Key elements of a new or existing system Different stakeholders can verify and evaluate requirements helps enabling the reuse of components 3/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Modelling Informal Methods Easy to learn and apply Too much expressiveness UML, boxes connected by lines 4/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Modelling Informal Methods 4/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Modelling Formal Methods Requires more intellectual effort Construction by applying semantical rules Event-B, PROMELA, UPPAAL, MoDeST 5/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Modelling Formal Methods 5/32 Modelling and Transformation of Non-Functional Annotations Context Introduction Model Transformation Used to generate models of different kind Use of a target model which can be formally verified Examples of target models are Petri nets and timed automata 6/32 Our approach: Explore the use
    [Show full text]
  • Modeling with UML Chapter 2, Part 3 Activity Diagrams Activity Diagrams
    Activity Diagrams • Describe the behavior of a system in terms of activities • Represent the sequencing and coordination of actions or steps, Modeling with UML similar to a control flow graph. Chapter 2, part 3 CS 4354 • Activity: Rounded rectangles represent actions called activities. Summer II 2015 • Edges between activities represent control flow. Jill Seaman ✦branching, looping, concurrency • Activity diagrams can be hierarchical: ✦A given activity in a rounded rectangle could be further detailed in its own separate activity diagram. 1 2 Activity Diagrams: Branching • Decisions (branches, alternates) ✦Branch Node: diamond with one incoming arrow two or more outgoing arrows. ✦Outgoing edges are labeled with guards (conditions in square brackets) that select that arrow when the condition is true. ✦[else] can be used as a guard. ✦Merge nodes (diamond with many incoming, one outgoing arrow) to mark the end of the branching. ✦The diamonds are sometimes omitted, but should be included for clarity. 3 4 Decision in the Handle Incident process. Activity Diagrams: Concurrency • Fork nodes and Join nodes (concurrency) ✦The fork is a line with one incoming edge and several outgoing edges. ✦Fork: denotes splitting control into multiple threads, representing the fact that each outgoing edge can be done in parallel. ✦The join is a line with many incoming edges and one outgoing edge. ✦Join: denotes synchronizing threads back into one (waiting until all of the incoming activities are completed before moving forward). ✦Fork and Join denote activities that may be done in any order (they are not required to be done concurrently). 5 6 Concurrency in incident management process.
    [Show full text]
  • Com.Telelogic.Rhapsody.Core
    com.telelogic.rhapsody.core Package Class Use Tree Serialized Deprecated Index Help PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes Package com.telelogic.rhapsody.core Interface Summary The IRPAcceptEventAction interface represents Accept Event IRPAcceptEventAction Action elements in a statechart or activity diagram. The IRPAcceptTimeEvent interface represents Accept Time Event IRPAcceptTimeEvent elements in activity diagrams and statecharts. The IRPAction interface represents the action defined for a IRPAction transition in a statechart. The IRPActionBlock interface represents action blocks in IRPActionBlock sequence diagrams. The IRPActivityDiagram interface represents activity diagrams in IRPActivityDiagram Rational Rhapsody models. IRPActor The IRPActor interface represents actors in Rhapsody models. The IRPAnnotation interface represents the different types of IRPAnnotation annotations you can add to your model - notes, comments, constraints, and requirements. The IRPApplication interface represents the Rhapsody application, IRPApplication and its methods reflect many of the commands that you can access from the Rhapsody menu bar. The IRPArgument interface represents an argument of an IRPArgument operation or an event. IRPASCIIFile The IRPAssociationClass interface represents association classes IRPAssociationClass in Rational Rhapsody models. The IRPAssociationRole interface represents the association roles IRPAssociationRole that link objects in communication diagrams. The IRPAttribute interface represents attributes of
    [Show full text]
  • Efficient Generation of Graphical Model Views Via Lazy Model-To-Text Transformation
    This is a repository copy of Efficient Generation of Graphical Model Views via Lazy Model- to-Text Transformation. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/164209/ Version: Accepted Version Proceedings Paper: Kolovos, Dimitris orcid.org/0000-0002-1724-6563, De La Vega, Alfonso and Cooper, Justin (Accepted: 2020) Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation. In: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems (MODELS ’20). (In Press) Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Efficient Generation of Graphical Model Views via Lazy Model-to-Text Transformation Dimitris Kolovos Alfonso de la Vega Justin Cooper Department of Computer Science Department of Computer Science Department of Computer Science University of York University of York University of York York, UK York, UK York, UK [email protected] [email protected] [email protected] ABSTRACT transforming them into textual formats such as Graphviz, Plan- Producing graphical views from software and system models is tUML, SVG and HTML, which are subsequently rendered in an often desirable for communication and comprehension purposes, embedded browser.
    [Show full text]