Requirements Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
07 Requirements What About RFP/RFB/Rfis?
CMPSCI520/620 07 Requirements & UML Intro 07 Requirements SW Requirements Specification • Readings • How do we communicate the Requirements to others? • [cK99] Cris Kobryn, Co-Chair, “Introduction to UML: Structural and Use Case Modeling,” UML Revision Task Force Object Modeling with OMG UML Tutorial • It is common practice to capture them in an SRS Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, • But an SRS doesn’t need to be a single paper document Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • Purpose • [OSBB99] Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande, “Behavioral Modeling,” UML Revision Task Force, Object Modeling with OMG UML • Contractual requirements Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea elicitation Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational • Baseline Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • for evaluating subsequent products • [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design. • for change control requirements Developing Information Systems with UML, Addison Wesley Copyright © 2000 by analysis Addison Wesley • Audience • [cB04] Bock, Conrad, Advanced Analysis and Design with UML • Users, Purchasers requirements http://www.kabira.com/bock/ specification • [rM02] Miller, Randy, “Practical UML: A hands-on introduction for developers,” -
Blurred Lines Between Role and Reality: a Phenomenological Study of Acting
Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2019 Blurred Lines Between Role and Reality: A Phenomenological Study of Acting Gregory Hyppolyte Brown Follow this and additional works at: https://aura.antioch.edu/etds Part of the Psychology Commons BLURRED LINES BETWEEN ROLE AND REALITY: A PHENOMENOLOGICAL STUDY OF ACTING A Dissertation Presented to the Faculty of Antioch University Santa Barbara In partial fulfillment of the requirements for the the degree of DOCTOR OF PSYCHOLOGY In CLINICAL PSYCHOLOGY by GREGORY HIPPOLYTE BROWN August 2019 This dissertation, by Gregory Hippolyte Brown, has been approved by the committee members signed below who recommend that it be accepted by the faculty of Antioch University Santa Barbara in partial fulfillment of requirements for the degree of DOCTOR OF PSYCHOLOGY Dissertation Committee: _________________________ Brett Kia-Keating, Ed.D. Chairperson __________________________ Sharleen O‘ Brien, Ph.D. Second Faculty __________________________ Thalia R. Goldstein, Ph.D. External Expert ii Copyright © 2019 Gregory Hippolyte Brown iii Abstract When an actor plays a character in a film, they try to connect with the emotions and behavioral patterns of the scripted character. There is an absence of literature regarding how a role influences an actor’s life before, during, and after film production. This study examined how acting roles might influence an actor during times on set shooting a movie or television series as well as their personal life after the filming is finished. Additionally the study considered the psychological impact of embodying a role, and whether or not an actor ever has the feeling that the performed character has independent agency over the actor. -
Sysml, the Language of MBSE Paul White
Welcome to SysML, the Language of MBSE Paul White October 8, 2019 Brief Introduction About Myself • Work Experience • 2015 – Present: KIHOMAC / BAE – Layton, Utah • 2011 – 2015: Astronautics Corporation of America – Milwaukee, Wisconsin • 2001 – 2011: L-3 Communications – Greenville, Texas • 2000 – 2001: Hynix – Eugene, Oregon • 1999 – 2000: Raytheon – Greenville, Texas • Education • 2019: OMG OCSMP Model Builder—Fundamental Certification • 2011: Graduate Certification in Systems Engineering and Architecting – Stevens Institute of Technology • 1999 – 2004: M.S. Computer Science – Texas A&M University at Commerce • 1993 – 1998: B.S. Computer Science – Texas A&M University • INCOSE • Chapters: Wasatch (2015 – Present), Chicagoland (2011 – 2015), North Texas (2007 – 2011) • Conferences: WSRC (2018), GLRCs (2012-2017) • CSEP: (2017 – Present) • 2019 INCOSE Outstanding Service Award • 2019 INCOSE Wasatch -- Most Improved Chapter Award & Gold Circle Award • Utah Engineers Council (UEC) • 2019 & 2018 Engineer of the Year (INCOSE) for Utah Engineers Council (UEC) • Vice Chair • Family • Married 14 years • Three daughters (1, 12, & 10) 2 Introduction 3 Our Topics • Definitions and Expectations • SysML Overview • Basic Features of SysML • Modeling Tools and Techniques • Next Steps 4 What is Model-based Systems Engineering (MBSE)? Model-based systems engineering (MBSE) is “the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.” -- INCOSE SE Vision 2020 5 What is Model-based Systems Engineering (MBSE)? “Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems. -
Modelling Interactions
University of Toronto Department of Computer Science Lecture 15: Modelling System Interactions Interactions with the new system How will people interact with the system? When/Why will they interact with the system? Use Cases introduction to use cases identifying actors identifying cases Advanced features Sequence Diagrams Temporal ordering of events involved in a use case © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1 University of Toronto Department of Computer Science Moving towards specification What functions will the new system provide? How will people interact with it? Describe functions from a user’s perspective UML Use Cases Used to show: the functions to be provided by the system which actors will use which functions Each Use Case is: a pattern of behavior that the new system is required to exhibit a sequence of related actions performed by an actor and the system via a dialogue. An actor is: anything that needs to interact with the system: a person a role that different people may play another (external) system. © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2 University of Toronto Department of Computer Science Use Case Diagrams Capture the relationships between actors and Use Cases Change a client contact Campaign Staff contact Manager Add a new client Record client payment Accountant © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3 University of Toronto Department of Computer Science Notation for Use Case Diagrams Use case Change client contact Staff contact Actor Communication association System boundary © 2004-5 Steve Easterbrook. -
Plantuml Language Reference Guide (Version 1.2021.2)
Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants -
Sysml Distilled: a Brief Guide to the Systems Modeling Language
ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML. -
Methodological and Analytical Expertise in Socio-Technological
Paper prepared for the Conference Proceedings of the International System Dynamics Conference in Washington DC USA, July, 2011 How does the Multi-Level Perspective help to enhance a System Dynamics analysis of a specific transition challenge? Silvia Ulli-Beer 1, Stefan Grösser 2 and Alexander Wokaun 1 [email protected] ; [email protected] ; [email protected] 1Paul Scherrer Institut, Dynamics of Innovative Systems, 5232 Villigen PSI, Switzerland 2University of St. Gallen, Institute of Management (IfB), Dufourstrasse 40a, 9000 St. Gallen, Switzerland 2University of Bern, Interdisciplinary Center for General Ecology (IKAÖ), Schanzeneckstr. 1, 3001 Bern, Switzerland Abstract This paper addresses the challenge of identifying adequate theoretical starting points for problem oriented simulation studies of socio-technical transitions towards near fossil free energy services e.g. for housing and transportation. The identification of adequate starting points for simulation studies is becoming increasingly important for the generalization of simulation results as well as for theory refinement. We found that the Multi-Level Perspective (MLP) offers a helpful language for a modelling experiment based in a feedback perspective. This allows the conceptualization of a socio-technical transition challenge departing from an inter-subjective and hence scientific starting point. In addition feedback modelling appears to be a promising mathematical analysis approach that helps to substantiate the MLP. We have seen that the insights of the simulation experiment corroborate basic assumptions of the MLP concerning multi-level alignment processes but also discriminate the decisive determinants and governance mechanisms that explain radical innovation and subsequently the creation of path dependency. 1. Introduction This paper addresses the challenge of identifying adequate theoretical starting points for problem oriented simulation studies of socio-technical transitions towards near fossil free energy services e.g. -
Define Your Project and System Requirements - a Guide for Program Managers and Directors
Define your project and system requirements - A guide for program managers and directors Disease Surveillance [epidemic determined] Notify Local Health Dept. [no significant activity] Assess Sensitivity of Measurement Georgia Department of Human Resources Division of Public Health Office of Health Information & Policy Define your project and system requirements - A guide for program managers and directors Disease Surveillance [epidemic determined] Notify Local Health Dept. [no significant activity] Assess Sensitivity of Measurement A synopsis of Applying Use Cases, Prepared by Gordon R. Freymann, MPH Office of Health Information & Policy Division of Public Health Georgia Department of Human Resources Publication # DPH02.92 Office of Health Information & Policy Division of Public Health Georgia Department of Human Resources Page 2 of 18 Define your project and system requirements - A guide for program managers and directors Inception Phase .......................................................................................................... 3 Identifying system boundaries...................................................................................... 4 Identifying Actors........................................................................................................ 4 Identifying Use Cases ...................................................................................... ........... 4 Elaboration Phase ....................................................................................................... 6 Primary -
Chapter 5 – Extending the Requirements Models Solutions to End-Of-Chapter Problems
Systems Analysis and Design in a Changing World, sixth edition 5-1 Chapter 5 – Extending the Requirements Models Solutions to End-of-Chapter Problems Review Questions 1. What are the models that describe use cases in more detail? Fully developed use case description, activity diagrams, and system sequence diagrams. 2. What two UML diagrams are used to model domain classes? Problem domain class diagram and state machine diagram. 3. Which part of a use case description can also be modeled by using an activity diagram? The “flow of activities” section. 4. Explain the difference between a use case and a scenario. Give a specific example of a use case with a few possible scenarios. A use case is the entire function or user goal or event. A scenario is one specific version or instance of that use case. From RMO we have Create customer account as a use case. But we might have Create online Customer account and Create instore customer account and even Create phone customer account as different scenarios. 5. List the parts or compartments of a fully developed use case description. Use case name Scenario Triggering event Brief description Actors Related use cases Stakeholders Preconditions Postconditions Flow of activities Exception conditions 6. Compare/contrast precondition and postcondition. A precondition describes the “states” of data and the system that must exist before the use case can begin. For example to add an item to a shopping cart, the item must exist in the database. A postcondition describes the states of data and the system that must exist after the use case completes. -
Introduction to Systems Modeling Languages
Fundamentals of Systems Engineering Prof. Olivier L. de Weck, Mark Chodas, Narek Shougarian Session 3 System Modeling Languages 1 Reminder: A1 is due today ! 2 3 Overview Why Systems Modeling Languages? Ontology, Semantics and Syntax OPM – Object Process Methodology SySML – Systems Modeling Language Modelica What does it mean for Systems Engineering of today and tomorrow (MBSE)? 4 Exercise: Describe the “Mr. Sticky” System Work with a partner (5 min) Use your webex notepad/white board I will call on you randomly We will compare across student teams © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 5 Why Systems Modeling Languages? Means for describing artifacts are traditionally as follows: Natural Language (English, French etc….) Graphical (Sketches and Drawings) These then typically get aggregated in “documents” Examples: Requirements Document, Drawing Package Technical Data Package (TDP) should contain all info needed to build and operate system Advantages of allowing an arbitrary description: Familiarity to creator of description Not-confining, promotes creativity Disadvantages of allowing an arbitrary description: Room for ambiguous interpretations and errors Difficult to update if there are changes Handoffs between SE lifecycle phases are discontinuous Uneven level of abstraction Large volume of information that exceeds human cognitive bandwidth Etc…. 6 System Modeling Languages Past efforts -
Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years. -
Plantuml Language Reference Guide
Drawing UML with PlantUML Language Reference Guide (Version 5737) PlantUML is an Open Source project that allows to quickly write: • Sequence diagram, • Usecase diagram, • Class diagram, • Activity diagram, • Component diagram, • State diagram, • Object diagram. Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples Every UML description must start by @startuml and must finish by @enduml. The sequence ”->” is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use ”-->”. It is also possible to use ”<-” and ”<--”. That does not change the drawing, but may improve readability. Example: @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: another authentication Response @enduml To use asynchronous message, you can use ”->>” or ”<<-”. @startuml Alice -> Bob: synchronous call Alice ->> Bob: asynchronous call @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 1 of 96 1.2 Declaring participant 1 SEQUENCE DIAGRAM 1.2 Declaring participant It is possible to change participant order using the participant keyword. It is also possible to use the actor keyword to use a stickman instead of a box for the participant. You can rename a participant using the as keyword. You can also change the background color of actor or participant, using html code or color name. Everything that starts with simple quote ' is a comment. @startuml actor Bob #red ' The only difference between actor and participant is the drawing participant Alice participant "I have a really\nlong name" as L #99FF99 Alice->Bob: Authentication Request Bob->Alice: Authentication Response Bob->L: Log transaction @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 2 of 96 1.3 Use non-letters in participants 1 SEQUENCE DIAGRAM 1.3 Use non-letters in participants You can use quotes to define participants.