GRS Protease Inhibitor Cocktail # GPI02.0001 (1 Ml) (FOR RESEARCH ONLY)

Total Page:16

File Type:pdf, Size:1020Kb

GRS Protease Inhibitor Cocktail # GPI02.0001 (1 Ml) (FOR RESEARCH ONLY) Product Info GPI02 1 V1.0 – 03/2019 GRS Protease Inhibitor Cocktail # GPI02.0001 (1 ml) (FOR RESEARCH ONLY) Product Description GRS Protease Inhibitor Cocktail is a mix of several compounds that inhibit protease activity and is being used to protect against undesired protein digestion that occurs during and after cell lysis. Composition The GRS Protease Inhibitor Cocktail comprises 100mM PMSF, 2mM Bestatin, 0.3mM Pepstatin A, and 0.3 mM E-64, dissolved in DMSO containing a small amount of deionized water. PMSF (PhenylMethylSulfonyl Fluoride) is a serine protease inhibitor with an effective concentration of 0.1- 1mM and a short half-life in aqueous solutions (ranging from ~2 hours at pH 7 to ~30 min at pH 8). Bestatin (Ubenimex) is a competitive, reversible protease inhibitor, derived from Streptomyces olivoreticuli, which has been shown to inhibit the enzymatic degradation of oxytocin, vassopresin, and several other peptides and compounds. Pepstatin A is a hexapeptide containing the uncommon aminoacid statine and is a very potent inhibitor of aspartyl proteases, as well as of some aspartic proteases such as Pepsin and Cathepsins D and E. And E-64 is an epoxide isolated from Aspergillus japonicas that irreversibly inhibits many cysteine proteases such as papain, calpain, staphopain and cathepsins B and L. Usage For the inhibition of protease activity, it is suggested to use 10 µl of GRS Protease Inhibitor Cocktail for each 1ml of cell lysate prepared from a cell culture with a density of 108cells/ml. Yet, as levels of endogenous proteases vary a lot between different organisms/cells, it is recommended to optimize final concentration for a particular experiment. Storage The GRS Protease Inhibitor Cocktail is dissolved in DMSO (containing small amount of deionized water) and should stored at -20ºC for up to 1 year. If crystals have been formed, incubate at room temperature for 5 minutes before usage. Caution PMSF is toxic (acetylcholine esterase inactivator) and may cause irritation to eyes and skin. When handling, always wear gloves and eye protection and proper lab clothing. GRiSP Research Solutions Rua Alfredo Allen, 455 4200-135 Porto Portugal www.grisp.pt | [email protected] GRiSP Research Solutions 2019 .
Recommended publications
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Role of Extracellular Proteases in Biofilm Disruption of Gram Positive
    e Engine ym er z in n g E Mukherji, et al., Enz Eng 2015, 4:1 Enzyme Engineering DOI: 10.4172/2329-6674.1000126 ISSN: 2329-6674 Review Article Open Access Role of Extracellular Proteases in Biofilm Disruption of Gram Positive Bacteria with Special Emphasis on Staphylococcus aureus Biofilms Mukherji R, Patil A and Prabhune A* Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India *Corresponding author: Asmita Prabhune, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India, Tel: 91-020-25902239; Fax: 91-020-25902648; E-mail: [email protected] Rec date: December 28, 2014, Acc date: January 12, 2015, Pub date: January 15, 2015 Copyright: © 2015 Mukherji R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Bacterial biofilms are multicellular structures akin to citadels which have individual bacterial cells embedded within a matrix of a self-synthesized polymeric or proteinaceous material. Since biofilms can establish themselves on both biotic and abiotic surfaces and that bacteria residing in these complex molecular structures are much more resistant to antimicrobial agents than their planktonic equivalents, makes these entities a medical and economic nuisance. Of late, several strategies have been investigated that intend to provide a sustainable solution to treat this problem. More recently role of extracellular proteases in disruption of already established bacterial biofilms and in prevention of biofilm formation itself has been demonstrated. The present review aims to collectively highlight the role of bacterial extracellular proteases in biofilm disruption of Gram positive bacteria.
    [Show full text]
  • Cysteine Proteinases of Microorganisms and Viruses
    ISSN 00062979, Biochemistry (Moscow), 2008, Vol. 73, No. 1, pp. 113. © Pleiades Publishing, Ltd., 2008. Original Russian Text © G. N. Rudenskaya, D. V. Pupov, 2008, published in Biokhimiya, 2008, Vol. 73, No. 1, pp. 317. REVIEW Cysteine Proteinases of Microorganisms and Viruses G. N. Rudenskaya1* and D. V. Pupov2 1Faculty of Chemistry and 2Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; fax: (495) 9393181; Email: [email protected] Received May 7, 2007 Revision received July 18, 2007 Abstract—This review considers properties of secreted cysteine proteinases of protozoa, bacteria, and viruses and presents information on the contemporary taxonomy of cysteine proteinases. Literature data on the structure and physicochemical and enzymatic properties of these enzymes are reviewed. High interest in cysteine proteinases is explained by the discovery of these enzymes mostly in pathogenic organisms. The role of the proteinases in pathogenesis of several severe diseases of human and animals is discussed. DOI: 10.1134/S000629790801001X Key words: cysteine proteinases, properties, protozoa, bacteria, viruses Classification and Catalytic Mechanism papain and related peptidases showed that the catalytic of Cysteine Proteinases residues are arranged in the following order in the polypeptide chain: Cys, His, and Asn. Also, a glutamine Cysteine proteinases are peptidyl hydrolases in residue preceding the catalytic cysteine is also important which the role of the nucleophilic group of the active site for catalysis. This residue is probably involved in the for is performed by the sulfhydryl group of a cysteine residue. mation of the oxyanion cavity of the enzyme. The cat Cysteine proteinases were first discovered and investigat alytic cysteine residue is usually followed by a residue of ed in tropic plants.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Final Program
    In Memoriam: Final Program XXV Congress of the International Society on Thrombosis and Haemostasis and 61st Annual SSC Meeting June 20 – 25, 2015 Toronto, Canada www.isth2015.org 1 Final Program Table of Contents 3 Venue and Contacts 5 Invitation and Welcome Message 12 ISTH 2015 Committees 24 Congress Support 25 Sponsors and Exhibitors 27 ISTH Awards 32 ISTH Society Information 37 Program Overview 41 Program Day by Day 55 SSC and Educational Program 83 Master Classes and Career Mentorship Sessions 87 Nurses Forum 93 Scientific Program, Monday, June 22 94 Oral Communications 1 102 Plenary Lecture 103 State of the Art Lectures 105 Oral Communications 2 112 Abstract Symposia 120 Poster Session 189 Scientific Program, Tuesday, June 23 190 Oral Communications 3 198 Plenary Lecture 198 State of the Art Lectures 200 Oral Communications 4 208 Plenary Lecture 209 Abstract Symposia 216 Poster Session 285 Scientific Program, Wednesday, June 24 286 Oral Communications 5 294 Plenary Lecture 294 State of the Art Lectures 296 Oral Communications 6 304 Abstract Symposia 311 Poster Session 381 Scientific Program, Thursday, June 25 382 Oral Communications 7 390 Plenary Lecture 390 Abstract Symposia 397 Highlights of ISTH 399 Exhibition Floor Plan 402 Exhibitor List 405 Congress Information 406 Venue Plan 407 Congress Information 417 Social Program 418 Toronto & Canada Information 421 Transportation in Toronto 423 Future ISTH Meetings and Congresses 2 427 Authors Index 1 Thank You to Everyone Who Supported the Venue and Contacts 2014 World Thrombosis Day
    [Show full text]
  • Crystal Structure of the Parasite Inhibitor Chagasin In
    Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases Izabela Redzynia1,*, Anna Ljunggren2,*, Anna Bujacz1, Magnus Abrahamson2, Mariusz Jaskolski3,4 and Grzegorz Bujacz1,4 1 Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Poland 2 Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Sweden 3 Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland 4 Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland Keywords A complex of chagasin, a protein inhibitor from Trypanosoma cruzi, and Chagas disease; cruzipain; cysteine papain, a classic family C1 cysteine protease, has been crystallized. Kinetic proteases; papain; protein inhibitors studies revealed that inactivation of papain by chagasin is very fast ) ) (k = 1.5 · 106 m 1Æs 1), and results in the formation of a very tight, Correspondence on m G. Bujacz, Institute of Technical Biochemis- reversible complex (Ki =36p ), with similar or better rate and equilib- try, Faculty of Biotechnology and Food rium constants than those for cathepsins L and B. The high-resolution Sciences, Technical University of Lodz, ul. crystal structure shows an inhibitory wedge comprising three loops, which Stefanowskiego 4/10, 90-924 Lodz, Poland forms a number of contacts responsible for the high-affinity binding. Com- Fax: +48 42 636 66 18 parison with the structure of papain in complex with human cystatin B Tel: +48 42 631 34 31 reveals that, despite entirely different folding, the two inhibitors utilize very E-mail: [email protected] similar atomic interactions, leading to essentially identical affinities for the M.
    [Show full text]
  • Biochemical Investigation of the Ubiquitin Carboxyl-Terminal Hydrolase Family" (2015)
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Biochemical investigation of the ubiquitin carboxyl- terminal hydrolase family Joseph Rashon Chaney Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, Biophysics Commons, and the Molecular Biology Commons Recommended Citation Chaney, Joseph Rashon, "Biochemical investigation of the ubiquitin carboxyl-terminal hydrolase family" (2015). Open Access Dissertations. 430. https://docs.lib.purdue.edu/open_access_dissertations/430 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Joseph Rashon Chaney (QWLWOHG BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Doctor of Philosophy )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Angeline Lyon Christine A. Hrycyna George M. Bodner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\R. E. Wild 04/24/2015 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Dissertation Submitted to the Faculty of Purdue University by Joseph Rashon Chaney In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 Purdue University West Lafayette, Indiana ii All of this I dedicate wife, Millicent, to my faithful and beautiful children, Josh and Caleb.
    [Show full text]
  • Intracellular Staphylococcus Aureus Employs the Cysteine Protease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.936575; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Intracellular Staphylococcus aureus employs the cysteine protease 5 staphopain A to induce host cell death in epithelial cells 6 7 Kathrin Stelzner1, Tobias Hertlein2, Aneta Sroka3, Adriana Moldovan1, Kerstin 8 Paprotka1, David Kessie1, Helene Mehling1, Jan Potempa3,4, Knut Ohlsen2, Martin J. 9 Fraunholz1, Thomas Rudel1* 10 11 1 Chair of Microbiology, University of Würzburg, Würzburg 97074, Germany 12 2 Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 13 97080, Germany 14 3 Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 15 Kraków, Poland 16 4 Department of Oral Immunology and Infectious Diseases, University of Louisville 17 School of Dentistry, Louisville, KY, USA 18 19 * Corresponding author 20 E-mail: [email protected] 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.936575; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 Staphylococcus aureus is a major human pathogen, which can invade and survive in 29 non-professional and professional phagocytes. Intracellularity is thought to contribute 30 to pathogenicity and persistence of the bacterium. Upon internalization by epithelial 31 cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the 32 cytosol and induce host cell death.
    [Show full text]
  • Crystal Structure of the Parasitic Protease Inhibitor, Chagasin, In
    ___________________________________________ LU:research Institutional Repository of Lund University __________________________________________________ This is an author produced version of a paper published in Journal of molecular biology. This paper has been peer- reviewed but does not include the final publisher proof- corrections or journal pagination. Citation for the published paper: Ljunggren, Anna and Redzynia, Izabela and Alvarez- Fernandez, Marcia and Abrahamson, Magnus and Mort, John S and Krupa, Joanne C and Jaskolski, Mariusz and Bujacz, Grzegorz. "Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease." J Mol Biol, 2007, Vol: 371, Issue: 1, pp. 137-53. http://dx.doi.org/10.1016/j.jmb.2007.05.005 Access to the published version may require journal subscription. Published with permission from: Elsevier Chagasin-cathepsin L complex structure Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease Anna Ljunggren1, Izabela Redzynia2, Marcia Alvarez-Fernandez1, Magnus Abrahamson1, John S. Mort3, Joanne C. Krupa3, Mariusz Jaskolski4,5, Grzegorz Bujacz2,5 1Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Sweden 2Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland 3Joint Diseases Laboratory, Shriners Hospital for Children, Montreal, Quebec, Canada 4Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland 5Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland RUNNING TITLE: Chagasin-cathepsin L complex structure Corresponding author: Prof. Grzegorz Bujacz Lodz, Poland Phone: (48-42)-6313431 Fax: (48-42)-6313402 Email: [email protected] 1 Chagasin-cathepsin L complex structure FOOTNOTES This work was supported in part by a grant from the State Committee for Scientific Research (T09A 039 25) and by a subsidy from the Foundation for Polish Science to M.J.
    [Show full text]
  • [Thesis Title Goes Here]
    BIOLOGICALLY ACTIVE ASSEMBLIES THAT ATTENUATE THROMBOSIS ON BLOOD-CONTACTING SURFACES A Dissertation Presented to The Academic Faculty by Zheng Qu In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Bioengineering Georgia Institute of Technology December 2012 BIOLOGICALLY ACTIVE ASSEMBLIES THAT ATTENUATE THROMBOSIS ON BLOOD-CONTACTING SURFACES Approved by: Dr. Elliot L. Chaikof, Advisor Dr. Larry V. McIntire The Wallace H. Coulter Department of The Wallace H. Coulter Department of Biomedical Engineering Biomedical Engineering Georgia Institute of Technology Georgia Institute of Technology Department of Surgery Beth Israel Deaconess Medical Center Dr. Julia E. Babensee Dr. W. Robert Taylor The Wallace H.Coulter Department of Division of Cardiology Biomedical Engineering Emory University School of Medicine Georgia Institute of Technology Dr. Stephen R. Hanson Department of Biomedical Engineering Oregon Health and Science University Date Approved: November 2, 2012 Dedicated to my parents, for their unconditional love. ACKNOWLEDGEMENTS The progress and advances made in this research were enabled by contributions from many colleagues and peers, as well as support from family and friends. It is these relationships that were forged during the course of my career that I cherish the most. First and foremost, I want to express my sincerest gratitude for Dr. Elliot Chaikof, for guiding me through the many challenges of scientific research with innovative ideas and patient advice, and above all, by always keeping the “big picture” in perspective. Dr. Chaikof has taken the time to personally support every step along the way of my career as a PhD candidate despite his huge commitments to the clinic.
    [Show full text]
  • Using Serpins Cysteine Protease Cross-Specificity to Possibly Trap
    Clinical Science (2020) 134 2235–2241 https://doi.org/10.1042/CS20200767 Correspondence Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera Mohamad Aman Jairajpuri and Shoyab Ansari Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India Correspondence: Mohamad Aman Jairajpuri ([email protected]) Human serine protease inhibitors (serpins) are the main inhibitors of serine proteases, but some of them also have the capability to effectively inhibit cysteine proteases. Se- vere acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription. Serpin traps its target proteases by presenting a reac- tive center loop (RCL) as protease-specific cleavage site, resulting in protease inactivation. Mpro target sites with its active site serine and other flanking residues can possibly interact with serpins. Alternatively, RCL cleavage site of serpins with known evidence of inhibition of cysteine proteases can be replaced by Mpro target site to make chimeric proteins. Puri- fied chimeric serpin can possibly inhibit Mpro that can be assessed indirectly by observing the decrease in ability of Mpro to cleave its chromogenic substrate. Chimeric serpins with best interaction and active site binding and with ability to form 1:1 serpin–Mpro complex in human plasma can be assessed by using SDS/PAGE and Western blot analysis with serpin antibody. Trapping SARS-CoV-2 Mpro cysteine protease using cross-class serpin cysteine protease inhibition activity is a novel idea with significant therapeutic potential.
    [Show full text]