SPACE WEATHERING in the ASTEROID BELT. B. Hapke, Dept

Total Page:16

File Type:pdf, Size:1020Kb

SPACE WEATHERING in the ASTEROID BELT. B. Hapke, Dept Lunar and Planetary Science XXXI 1087.pdf HOW TO TURN OC's INTO S's: SPACE WEATHERING IN THE ASTEROID BELT. B. Hapke, Dept. Of Geology and Planetary Science, Univ. of Pittsburgh, Pittsburgh, PA 15260, [email protected]. This paper demonstrates that the same belt impact velocities probably are too low for process that darkens and reddens lunar soil appreciable vapor production; however, solar also operates on asteroid regoliths and can wind sputtering is still effective, although at a cause the spectra of powdered ordinary rate less by an order of magnitude from the chondrites to closely resemble those of S moon because of the greater distance from the asteroids. sun. Space weathering on the moon is now well understood. The remarkable recent discovery of ubiquitous vapor-deposited coatings on lunar regolith particles by Keller and his colleagues [1], [2] has amply confirmed the space weathering model first suggested by the author and his colleagues 25 years ago [3]. (See also [4].) According to this model, the lunar optical and magnetic ESR properties result from submicroscopic metallic iron (SMFe) particles 5-10 nm in diameter in coatings produced by the deposition of ferrous silicate vapor. The SMFe is made by a physical reduction process, the selective partial loss of oxygen that occurs during deposition of the coatings, and does Fig. 1 demonstrates the spectral effects not require heating, vitrification, or a reducing of SMFe-bearing coatings in the lunar environment. This space weathering regolith. The figure shows the spectra of mechanism has been demonstrated by pulverized Apollo 11 rock 10017 and extensive laboratory experiments [3], [5]. On powdered glass made by vitrifying this rock in the moon the vapor is generated by two vacuum. Note that the glass is not dark nor processes: solar wind sputtering and red and has deep broad absorption bands, micrometeorite impacts, both contributing contrary to widespread erroneous belief based roughly equally. It occurs only in a porous on melting experiments that were carried out medium, such as a regolith, where the vapor is under inappropriately oxidizing conditions injected downward into the medium, rather [8]. The equations developed in [9] were used than escaping [6], but is not effective on a to calculate the result of covering the grains in solid surface. The SMFe-rich vapor deposits a mixture of rock and glass powder with darken, redden and decrease the depths of silicate coatings containing SMFe. The absorption bands of the regolith particles they complex refractive indices of Fe in [10] were coat. used. In Fig. 1 the model spectrum is On Mercury the magnetic field compared with lunar soil 10084. The bulk prevents the solar wind from reaching the mass fraction of SMFe in the model is 0.5%, a surface most of the time, so that impact value typical of lunar regolith. vaporization dominates [7]. In the asteroid Lunar and Planetary Science XXXI 1087.pdf HOW TO TURN OC's INTO S's: B. W. Hapke Although the overall spectrum of the coated OC is similar to to the S, the match is not perfect. Complete agreement is not expected, because 26 Proserpina probably is not the parent of Nanjemoy. In addition, however, asteroid absorption bands generally appear to be wider than those of meteorites. This can be understood if the asteroid regoliths contain abundant glass (compare the rock and glass spectra in Fig. 1) in addition to crystalline grains. This glass could be made by impact vitrification. If so, it would imply that at least part of the micrometeorite population impacting asteroid surfaces have higher velocities than is commonly believed. The result of a similar calculation on In conclusion, there appears to be no the spectrum [11] of a pulverized sample of good reason to believe that S asteroids are not Nanjemoy, a type H ordinary chondrite, is the parent bodies of the ordinary chondrites. shown in Fig. 2. In this figure the effect of References: [1] Keller, L. and adding 0.05% SMFe-bearing coatings to the McKay, D. (1993) Science, 261, 1305-1307. grains of Nanjemoy is compared with 26 [2] Wentworth, S. et al (1999) Met., Planet. Proserpina [11], an S asteroid. Again, note Sci., 34, 593-604. [3] Hapke, B. et al (1975) how the coatings darken, redden and subdue Moon, 13, 339-353. [4] Hapke, B. (1986) the absorption bands, so that the spectrum of Icarus, 66, 270-279. [5] Hapke, B. (1973) the meteorite resembles the asteroid's. Moon, 7, 342-355. [6] Hapke, B. and Laboratory experiments indicate that on the Cassidy, W. (1978) Geophys. Res. Let., 5, moon a time of the order of 100,000 years is 297-300. [7] Hapke, B. (1977) Phys. Earth, required to darken maifc rock powder by solar Planet. Interiors, 15, 264-274. [8] Adams, J. wind sputtering [5]. The ion flux is less by a and McCord, T. (1971) Proc. Lunar Sci. Conf. factor of 10 in the asteroid belt, but only 1/10 2nd, 2183-2196. [9] Hapke, B., (1993) as much SMFe is required to match the Theory of Reflectance and Emittance asteroid spectrum, so that the exposure time Spectroscopy, Cambridge Univ. Press, New required to alter an asteroid spectrum is about York. [10] Johnson, P. and Christy, R. 100,000 years also. (1974), Phys. Rev. B, 9 5056-5070. [11] Clark, B. et al (1992), Icarus, 97, 288-297..
Recommended publications
  • PACS Sky Fields and Double Sources for Photometer Spatial Calibration
    Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 1 PACS Sky Fields and Double Sources for Photometer Spatial Calibration M. Nielbock1, D. Lutz2, B. Ali3, T. M¨uller2, U. Klaas1 1Max{Planck{Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 2Max{Planck{Institut f¨urExtraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany 3NHSC, IPAC, California Institute of Technology, Pasadena, CA 91125, USA Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 2 Contents 1 Scope and Assumptions 4 2 Applicable and Reference Documents 4 3 Stars 4 3.1 Optical Star Clusters . .4 3.2 Bright Binaries (V -band search) . .5 3.3 Bright Binaries (K-band search) . .5 3.4 Retrieval from PACS Pointing Calibration Target List . .5 3.5 Other stellar sources . 13 3.5.1 Herbig Ae/Be stars observed with ISOPHOT . 13 4 Galactic ISOCAM fields 13 5 Galaxies 13 5.1 Quasars and AGN from the Veron catalogue . 13 5.2 Galaxy pairs . 14 5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations 14 6 Solar system objects 18 6.1 Asteroid conjunctions . 18 6.2 Conjunctions of asteroids with pointing stars . 22 6.3 Planetary satellites . 24 Appendices 26 A 2MASS images of fields with suitable double stars from the K-band 26 B HIRES/2MASS overlays for double stars from the K-band search 32 C FIR/NIR overlays for double galaxies 38 C.1 HIRES/2MASS overlays for double galaxies .
    [Show full text]
  • Asteroid Lightcurve Inversion with Bayesian Inference K
    A&A 642, A138 (2020) Astronomy https://doi.org/10.1051/0004-6361/202038036 & © K. Muinonen et al. 2020 Astrophysics Asteroid lightcurve inversion with Bayesian inference K. Muinonen1,2, J. Torppa3, X.-B. Wang4,5, A. Cellino6, and A. Penttilä1 1 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, PO Box 64, 00014 U. Helsinki, Finland e-mail: [email protected] 2 Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, 02430 Masala, Finland 3 Space Systems Finland, Kappelitie 6, 02200 Espoo, Finland 4 Yunnan Observatories, CAS, PO Box 110, Kunming 650216, PR China 5 School of Astronomy and Space science, University of Chinese Academy of Sciences, Beijing 100049, PR China 6 INAF, Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 27 March 2020 / Accepted 9 August 2020 ABSTRACT Context. We assess statistical inversion of asteroid rotation periods, pole orientations, shapes, and phase curve parameters from pho- tometric lightcurve observations, here sparse data from the ESA Gaia space mission (Data Release 2) or dense and sparse data from ground-based observing programs. Aims. Assuming general convex shapes, we develop inverse methods for characterizing the Bayesian a posteriori probability density of the parameters (unknowns). We consider both random and systematic uncertainties (errors) in the observations, and assign weights to the observations with the help of Bayesian a priori probability densities. Methods. For general convex shapes comprising large numbers of parameters, we developed a Markov-chain Monte Carlo sampler (MCMC) with a novel proposal probability density function based on the simulation of virtual observations giving rise to virtual least-squares solutions.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • On March 16 , 2019 Fifteen Years of the Faulkes Telescope Project
    On March 16th, 2019 fifteen years of the Faulkes Telescope Project Our participation in this great adventure Andre Debackere March 2019 We started observations with the Faulkes Telescopes in January 2010. We studied different types of astronomical objects as part of - scientific workshop called “ASAM” at College Le Monteil, Monistrol sur Loire, France - European Comenius project, 6 schools in 5 countries - educational activities, 3 teachers and 2 schools - personal research, hunting binaries, measurements and discoveries 1) Scientific workshop from January 2010 to June 2016 with a dozen college students (12-16 years old) a) Our first subject of study : Trans-Neptunians and dwarf planets, astrometry and animations Learn how to use the Faulkes Telescope interface and the tools as “target visibility” and “exposure time calculator”. To be able to recognize the target in the stellar field by using ALADIN, CDS, Strasbourg, France and ASTROMETRICA, Herbert Raab, Austria. Make animations showing the motion of the asteroid against the starry sky background (with SALSAJ, EUHOU or ASTROMETRICA). How to locate an object in the sky, celestial coordinates (right ascension and declination), their measurements with ASTOMETRICA. The 2m telescopes (FTN & FTS) are powerful instruments so we started by studying the trans- Neptunians, very distant asteroids some of which are candidates for the rank of dwarf planets as for example Varuna and Orcus. (20000) Varuna discovered in 2000 and (90482) Orcus discovered in 2004 are both trans- Neptunian object from
    [Show full text]
  • The Minor Planet Bulletin, We Feel Safe in Al., 1989)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described.
    [Show full text]
  • New and Updated Convex Shape Models of Asteroids Based on Optical Data from a Large Collaboration Network
    A&A 586, A108 (2016) Astronomy DOI: 10.1051/0004-6361/201527441 & c ESO 2016 Astrophysics New and updated convex shape models of asteroids based on optical data from a large collaboration network J. Hanuš1,2,J.Durechˇ 3, D. A. Oszkiewicz4,R.Behrend5,B.Carry2,M.Delbo2,O.Adam6, V. Afonina7, R. Anquetin8,45, P. Antonini9, L. Arnold6,M.Audejean10,P.Aurard6, M. Bachschmidt6, B. Baduel6,E.Barbotin11, P. Barroy8,45, P. Baudouin12,L.Berard6,N.Berger13, L. Bernasconi14, J-G. Bosch15,S.Bouley8,45, I. Bozhinova16, J. Brinsfield17,L.Brunetto18,G.Canaud8,45,J.Caron19,20, F. Carrier21, G. Casalnuovo22,S.Casulli23,M.Cerda24, L. Chalamet86, S. Charbonnel25, B. Chinaglia22,A.Cikota26,F.Colas8,45, J.-F. Coliac27, A. Collet6,J.Coloma28,29, M. Conjat2,E.Conseil30,R.Costa28,31,R.Crippa32, M. Cristofanelli33, Y. Damerdji87, A. Debackère86, A. Decock34, Q. Déhais36, T. Déléage35,S.Delmelle34, C. Demeautis37,M.Dró˙zd˙z38, G. Dubos8,45, T. Dulcamara6, M. Dumont34, R. Durkee39, R. Dymock40, A. Escalante del Valle85, N. Esseiva41, R. Esseiva41, M. Esteban24,42, T. Fauchez34, M. Fauerbach43,M.Fauvaud44,45,S.Fauvaud8,44,45,E.Forné28,46,†, C. Fournel86,D.Fradet8,45, J. Garlitz47, O. Gerteis6, C. Gillier48, M. Gillon34, R. Giraud34, J.-P. Godard8,45,R.Goncalves49, Hiroko Hamanowa50, Hiromi Hamanowa50,K.Hay16, S. Hellmich51,S.Heterier52,53, D. Higgins54,R.Hirsch4, G. Hodosan16,M.Hren26, A. Hygate16, N. Innocent6, H. Jacquinot55,S.Jawahar56, E. Jehin34, L. Jerosimic26,A.Klotz6,57,58,W.Koff59, P. Korlevic26, E. Kosturkiewicz4,38,88,P.Krafft6, Y. Krugly60, F. Kugel19,O.Labrevoir6, J.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected.
    [Show full text]
  • Techniques for Asteroid Spectrocopy Marcel Popescu
    Techniques for asteroid spectrocopy Marcel Popescu To cite this version: Marcel Popescu. Techniques for asteroid spectrocopy. Earth and Planetary Astrophysics [astro- ph.EP]. Observatoire de Paris; Universitatea Politehnica din Bucuresti, Facultatea de Ştiinţe Aplicate, 2012. English. tel-00785991 HAL Id: tel-00785991 https://tel.archives-ouvertes.fr/tel-00785991 Submitted on 7 Feb 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OBSERVATOIRE DE PARIS ÉCOLE DOCTORALE D’ASTRONOMIE ET D’ASTROPHYSIQUE D’ÎLE-DE-FRANCE ∗ UNIVERSITATEA POLITHENICA BUCURE¸STI FACULTATEA DE ¸STIIN ¸TE APLICATE DOCTORAL THESIS by Marcel Popescu TECHNIQUES FOR ASTEROID SPECTROSCOPY Defended the 23 Octobre 2012 before the jury: Vasile IFTODE (Universitatea Polithenica Bucure¸sti) President Olivier GROUSSIN (Laboratoire d’Astrophysique de Marseille) Reviewer Petre POPESCU (Institutul Astronomic al Academiei Române) Reviewer Dan DUMITRA¸S (INFLPR, România) Reviewer Jean SOUCHAY (SYRTE - Observatoire de Paris) Examiner Mirel BIRLAN (IMCCE - Observatoire de Paris) Co-Advisor
    [Show full text]
  • Minor Planets Cosmic Octave Tuning Data
    Solar System Minor Planets Cosmic Octave Tuning Data www.planetware.de Please note: hz. = Frequency in Hertz (cycle per second) Commas in German writing = , (instead of . ) oct. = Number of octaves from the period Date of last obs. = Last observation used in the fit A1 = Corresponding concert pitch A Date in German writing = day.month.year cent = deviation +/-50 cent from 440 Hz bpm = beats per minute Classifications: Atira: An asteroid orbit contained entirely within the orbit of the Earth (Q < 0.983 au). Also known as an Interior Earth Object. Aten: Near-Earth asteroid orbits similar to that of 2062 Aten (a < 1.0 au; Q > 0.983 au). Amor: Near-Earth asteroid orbits similar to that of 1221 Amor (1.017 au < q < 1.3 au). Celiestial Body Period Date Tone a1 cent Tempo NASA days year of last obs. hz note oct. Hz +/- 50 bpm source MERKUR 87,969 0,24 141,27 C# 30 448,51 33,2 66,2 2020 AV2 Atira 151,191 0,41 23.01.2020 164,40 E 31 438,88 -4,4 77,1 Link VENUS 224,701 0,62 221,23 A 32 442,46 9,6 103,7 367943 Duende (2012 DA14) Aten 317,206 0,87 21.02.2013 156,71 D# 32 443,25 12,7 73,5 Link 2062 Aten Aten 347,213 0,95 06.02.2015 143,17 D 32 429,02 -43,7 67,1 Link APOLLO Near-Earth asteroid orbits which cross the Earth's orbit similar to that of 1862 Apollo (a > 1.0 au; q < 1.017 au).
    [Show full text]
  • The Calern Asteroid Polarimetric Survey Using the Torino Polarimeter: Assessment of Instrument Performances and first Scientific Results
    Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 28 October 2016 (MN LATEX style file v2.2) The Calern Asteroid Polarimetric Survey using the Torino Polarimeter: assessment of instrument performances and first scientific results M. Devog`ele1,2, A. Cellino3, S. Bagnulo4, J.P. Rivet 2, P. Bendjoya2, L. Abe2, C. Pernechele5, G. Massone6, D. Vernet2, P. Tanga2, and C. Dimur2, 1Universit´ede Li`ege, Space sciences, Technologies and Astrophysics Research (STAR) Institute, All´ee du 6 Aoˆut 19c, Sart Tilman, 4000 Li`ege, Belgium 2Laboratoire Lagrange, UMR7293, Univ. Cˆote d’Azur, CNRS, Obs. de la Cˆote d’Azur, Bv de l’Observatoire, S 34229, 06304 Nice, France 3INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy 4Armagh Observatory, College Hill, Armagh BT61 9DG, UK 5INAF - Osservatorio Astronomico di Padova, Padova, Italy 6INAF - Osservatorio Astrofisico di Torino, Pino Torinese, Italy ABSTRACT A new polarimeter based on the Wedged double Wollaston concept has been built at the Torino Observatory and installed on a 1-meter telescope at the Calern observing station of the “Observatoire de la Cˆote d’Azur (France)”. Its main purpose is to carry out a polarimetric survey of minor Solar System objects, named CAPS (Calern Asteroid Polarimetric Survey). In this paper, the new Torino Polarimeter (ToPol) and the results of preliminary scientific validation tests are described. A number of standard stars with known polarization states, as well as a number of asteroids for which the polarimetric properties are known, have been observed in order to assess the instrument accuracy. The instrumental polarization has been found to be stable within a few 10−4 units.
    [Show full text]