The Role of the Prion Protein in the Immune System

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Prion Protein in the Immune System Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 The role of the prion protein in the immune system Kana, V Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-79331 Dissertation Published Version Originally published at: Kana, V. The role of the prion protein in the immune system. 2013, University of Zurich, Faculty of Science. The Role of the Prion Protein in the Immune System Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Veronika Kana von Chur GR Promotionskomitee Prof. Dr. Adriano Aguzzi (Vorsitz) Prof. Dr. Cornelia Halin Winter Prof. Dr. Christian Grimm Prof. Dr. Christian Münz Zürich, 2013 TABLE OF CONTENTS 1 SUMMARY ........................................................................................................................................ 3 2 ZUSAMMENFASSUNG .................................................................................................................... 6 3 ABBREVIATIONS ............................................................................................................................. 9 4 THE ROLE OF THE PRION PROTEIN IN THE IMMUNE SYSTEM .............................................. 11 4.1 INTRODUCTION ...................................................................................................................... 12 4.1.1 Prion diseases – the inglorious reason for the prion protein’s fame .................................. 12 4.1.2 A function for PrPC in the immune system ......................................................................... 16 4.1.3 The Prnp knockout mouse and the flanking gene problem ............................................... 22 4.1.4 Scientific aims .................................................................................................................... 25 4.2 RESULTS ................................................................................................................................. 26 4.2.1 Higher phagocytic activity in congenic – but not in coisogenic – Prnp knockout mice ...... 26 4.2.2 RNA sequencing identifies candidate confounder genes linked to Prnp on mouse Chr2 33 4.2.3 Analysis of candidate confounder genes Sirpa, Mertk, Tyro3 and Thbs1 ......................... 41 4.2.4 Sirpa129 is linked to Prnp-/- allele in all analysed Prnp knockout strains ............................. 44 4.2.5 Sirpa129 enhances phagocytosis in the absence of Prnp ................................................... 46 4.2.6 Sirpa regulates phagocytosis irrespective of Prnp status .................................................. 49 4.2.7 Sirpa129 exacerbates mouse EAE in the absence of Prnp ................................................. 59 4.2.8 EAE development in congenic B6.129 mice with different combinations of Prnp (wt and ZrchI) and Sirpa (B6 and 129) alleles ..................................................................................... 67 4.3 DISCUSSION ........................................................................................................................... 71 4.3.1 Mouse genetics excludes PrPC as inhibitor of phagocytosis ............................................. 71 4.3.2 Modulation of EAE development by Prnp and its polymorphic flanking genes – a blurry picture ................................................................................................................................... 73 4.3.3 Concluding remarks ........................................................................................................... 75 4.4 MICE, MATERIAL AND METHODS ......................................................................................... 78 4.4.1 Mice .................................................................................................................................... 78 4.4.2 RNA-Seq ............................................................................................................................ 79 4.4.3 RFLP and sequencing analysis of candidate genes .......................................................... 80 4.4.4 Genome-wide and Chr2 STR analysis .............................................................................. 82 4.4.5 High-resolution microsatellite genotyping on Chr2 ............................................................ 82 4.4.6 Phagocytosis assay with pMΦ ........................................................................................... 83 4.4.7 Phagocytosis assay with BMDM ........................................................................................ 84 4.4.8 Flow cytometric analysis .................................................................................................... 84 4.4.9 Immunofluorescence .......................................................................................................... 85 4.4.10 Induction of EAE and clinical evaluation ............................................................................ 85 4.4.11 Histology and immunohistochemistry ................................................................................ 85 4.4.12 Statistical analysis .............................................................................................................. 86 4.5 SUPPLEMENTARY TABLES ................................................................................................... 87 1 | 4.5.1 Supplementary Table 1. List of differentially expressed genes in pMΦ of B6.129- PrnpZrchI/ZrchI vs. B6.129-Prnpwt/wt identified by RNA-Seq. ............................................................... 87 4.5.2 Supplementary Table 2. Genes containing non-synonymous SNPs between B6.129- PrnpZrchI/ZrchI vs. B6.129-Prnpwt/wt ..................................................................................................... 96 5 TRANSPLANTED STROMAL-VASCULAR PDGFRβ+ CELLS DEVELOP INTO FUNCTIONAL FOLLICULAR DENDRITIC CELLS ...................................................................................................... 101 5.1 INTRODUCTION ..................................................................................................................... 102 5.1.1 The stromal compartment of lymphoid tissues ................................................................. 102 5.1.2 FDC in physiological and pathological conditions ............................................................ 107 5.1.3 Scientific aims ................................................................................................................... 109 5.2 RESULTS ................................................................................................................................ 111 5.2.1 FDC are derived from PDGFRβ+ precursors .................................................................... 111 5.2.2 Characterization of isolated stromal-vascular PDGFRβ+ cells ......................................... 115 5.2.3 Transplanted PDGFRβ+ stromal-vascular cells develop into mature FDC ...................... 121 5.2.4 FDC derived from transplanted PDGFRβ+ stromal-vascular cells trap IC ....................... 126 5.2.5 Factors influencing outcome of stromal-derived PDGFRβ+ cells transplantations ........... 130 5.3 DISCUSSION .......................................................................................................................... 132 5.3.1 PDGFRβ as a marker for FDC precursors ....................................................................... 132 5.3.2 Recapitulation of FDC development in a collagen sponge .............................................. 134 5.3.3 A role for FDC precursors in prion diseases? .................................................................. 136 5.4 MICE, MATERIAL AND METHODS ....................................................................................... 139 5.4.1 Mice .................................................................................................................................. 139 5.4.2 Isolation of perigonadal white adipose stromal-vascular cell fraction .............................. 139 5.4.3 Quantitative RT PCR ........................................................................................................ 140 5.4.4 Subcapsular renal transplantation of PDGFRβ++ stromal-vascular cells .......................... 141 5.4.5 In vitro IC trapping ............................................................................................................ 141 5.4.6 In vivo IC trapping ............................................................................................................. 142 5.4.7 Immunohistochemistry and immunofluorescence ............................................................ 142 5.4.8 Quantification of Mfge8 staining on Pdgfrb-Cre+ x CAG-tdTomato (Ai14) spleen sections ......................................................................................................................................... 143 6 ACKNOWLEDGMENTS ................................................................................................................ 144 7 CURRICULUM VITAE AND PUBLICATIONS ............................................................................... 147 8 BIBLIOGRAPHY ............................................................................................................................ 149 2 |
Recommended publications
  • Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
    Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This
    [Show full text]
  • Diagnostic Value of PRND Gene Expression Profiles in Astrocytomas: Relationship to Tumor Grades of Malignancy
    989-996 29/3/07 11:35 Page 989 ONCOLOGY REPORTS 17: 989-996, 2007 989 Diagnostic value of PRND gene expression profiles in astrocytomas: Relationship to tumor grades of malignancy S. COMINCINI1, V. FERRARA1, A. ARIAS1, A. MALOVINI1, A. AZZALIN1, L. FERRETTI1, E. BENERICETTI2, M. CARDARELLI3, M. GEROSA3, M.G. PASSARIN4, S. TURAZZI3 and R. BELLAZZI5 1Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia; 2Azienda Ospedaliera - Universitaria di Parma, Parma; 3Clinica Neurochirurgica Università di Verona; 4U.O. Neurologia, Azienda Ospedaliera - Universitaria di Verona, Verona; 5Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Pavia, Italy Received December 14, 2006; Accepted January 24, 2007 Abstract. Doppel (PRND) is a paralogue of the mammalian grade astrocytomas have an inherent tendency to progress prion (PRNP) gene. It is abundant in testis and, unlike PRNP, toward more malignant forms. This progression has been it is expressed at low levels in the adult central nervous system thought to result from an accumulation of genetic events (CNS). Besides, doppel overexpression correlates with some that leads to the clonal expansion of a malignant cell (4). prion-disease pathological features, such as ataxia and death Some of these events, such as the inactivation of the p53 of cerebellar neurons. Recently, ectopic expression of doppel tumor suppressor gene in the initial steps of carcinogenesis was found in two different tumor types, specifically in glial and amplification of the epidermal growth factor receptor and haematological cancers. In order to address clinical (EGFR) gene in the late stages have been identified (reviewed important issues, PRND mRNA expression was investigated in ref.
    [Show full text]
  • Deficiency of the Zinc Finger Protein ZFP106 Causes Motor and Sensory
    Human Molecular Genetics, 2016, Vol. 25, No. 2 291–307 doi: 10.1093/hmg/ddv471 Advance Access Publication Date: 24 November 2015 Original Article ORIGINAL ARTICLE Deficiency of the zinc finger protein ZFP106 causes Downloaded from https://academic.oup.com/hmg/article/25/2/291/2384594 by guest on 23 September 2021 motor and sensory neurodegeneration Peter I. Joyce1, Pietro Fratta2,†, Allison S. Landman1,†, Philip Mcgoldrick2,†, Henning Wackerhage3, Michael Groves2, Bharani Shiva Busam3, Jorge Galino4, Silvia Corrochano1, Olga A. Beskina2, Christopher Esapa1, Edward Ryder4, Sarah Carter1, Michelle Stewart1, Gemma Codner1, Helen Hilton1, Lydia Teboul1, Jennifer Tucker1, Arimantas Lionikas3, Jeanne Estabel5, Ramiro Ramirez-Solis5, Jacqueline K. White5, Sebastian Brandner2, Vincent Plagnol6, David L. H. Bennet4,AndreyY.Abramov2,LindaGreensmith2,*, Elizabeth M. C. Fisher2,* and Abraham Acevedo-Arozena1,* 1MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK, 2UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK, 3Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK, 4Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK, 5Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and 6UCL Genetics Institute, London WC1E 6BT, UK *To whom correspondence should be addressed. Email: [email protected] (A.A.)/e.fi[email protected] (E.M.C.F.)/[email protected] (L.G.) Abstract Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function.
    [Show full text]
  • The Title of the Article
    Identifying Interacting Environmental Factor – Gene Pairs Chad Kimmel, MS1, Jonathan Lustgarten, PhD3, An-Kwok Ian Wong, MS2, Shyam Visweswaran, MD, PhD1,2 1Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 2Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 3 University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA ABSTRACT underlying the disease (based on the already characterized mechanisms in the similar diseases) or in investigating Most diseases are caused by a combination of new therapies (based on the therapies in use in the similar environmental and genetic etiological factors, and these diseases). factors may interact in causing disease. We conjectured that an environmental factor and a gene that are Several papers have described innovative methods for associated with the same set of diseases are likely to extracting environmental factors of disease and in interact. We extracted environmental factor – disease analyzing environmental factors in combination with associations and gene – disease associations from freely genetic factors. Liu et. al. extracted a comprehensive list accessible online databases and the research literature, of associations between disease and environmental factors and identified environmental factor – gene pairs that were using the Medical Subject Headings (MeSH) annotations similar in being associated with a common set of diseases. of MEDLINE articles and combined it with genetic For several of these pairs that we examined, we found factors of disease to characterize the “etiome” profile of evidence for plausible biological interactions in the over 800 diseases [3]. Patel et. al. developed a new literature. We postulate that that the remaining pairs may method called an Environment-Wide Association Study represent novel interactions between an environmental (EWAS) - similar to a Genome Wide Association Study factor and a gene.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Reconstructability Analysis As a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases
    Portland State University PDXScholar Systems Science Faculty Publications and Presentations Systems Science 3-2010 Reconstructability Analysis As A Tool For Identifying Gene-Gene Interactions In Studies Of Human Diseases Stephen Shervais Eastern Washington University Patricia L. Kramer Oregon Health & Science University Shawn K. Westaway Oregon Health & Science University Nancy J. Cox University of Chicago Martin Zwick Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac Part of the Bioinformatics Commons, Diseases Commons, and the Genomics Commons Let us know how access to this document benefits ou.y Citation Details Shervais, S., Kramer, P. L., Westaway, S. K., Cox, N. J., & Zwick, M. (2010). Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases. Statistical Applications In Genetics & Molecular Biology, 9(1), 1-25. This Article is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Statistical Applications in Genetics and Molecular Biology Volume 9, Issue 1 2010 Article 18 Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases Stephen Shervais∗ Patricia L. Kramery Shawn K. Westawayz Nancy J. Cox∗∗ Martin Zwickyy ∗Eastern Washington University, [email protected] yOregon Health & Science University, [email protected] zOregon Health & Science University, [email protected] ∗∗University of Chicago, [email protected] yyPortland State University, [email protected] Copyright c 2010 The Berkeley Electronic Press.
    [Show full text]
  • Prostate Cancer Prognostics Using Biomarkers Prostatakrebsprognostik Mittels Biomarkern Prognostic Du Cancer De La Prostate Au Moyen De Biomarqueurs
    (19) TZZ Z_T (11) EP 2 885 640 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/574 (2006.01) C12Q 1/68 (2018.01) 18.07.2018 Bulletin 2018/29 C40B 30/04 (2006.01) (21) Application number: 13829137.2 (86) International application number: PCT/US2013/055429 (22) Date of filing: 16.08.2013 (87) International publication number: WO 2014/028884 (20.02.2014 Gazette 2014/08) (54) PROSTATE CANCER PROGNOSTICS USING BIOMARKERS PROSTATAKREBSPROGNOSTIK MITTELS BIOMARKERN PROGNOSTIC DU CANCER DE LA PROSTATE AU MOYEN DE BIOMARQUEURS (84) Designated Contracting States: • GHADESSI, Mercedeh AL AT BE BG CH CY CZ DE DK EE ES FI FR GB New Westminster, British Columbia V3M 6E2 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • JENKINS, Robert, B. PL PT RO RS SE SI SK SM TR Rochester, Minnesota 55902 (US) • VERGARA CORREA, Ismael A. (30) Priority: 16.08.2012 US 201261684066 P Bundoora, Victoria 3083 (AU) 13.02.2013 US 201361764365 P 14.03.2013 US 201361783124 P (74) Representative: Cornish, Kristina Victoria Joy et al Kilburn & Strode LLP (43) Date of publication of application: Lacon London 24.06.2015 Bulletin 2015/26 84 Theobalds Road London WC1X 8NL (GB) (73) Proprietors: • Genomedx Biosciences, Inc. (56) References cited: Vancouver BC V6B 2W9 (CA) WO-A1-2009/143603 WO-A1-2013/090620 • MAYO FOUNDATION FOR MEDICAL WO-A2-2006/091776 WO-A2-2006/110264 EDUCATION AND RESEARCH WO-A2-2007/056049 US-A1- 2006 134 663 Rochester, MN 55905 (US) US-A1- 2007 037 165 US-A1- 2007 065 827 US-A1-
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis
    Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma, Anna-Karin Ekman, Cecilia Bivik Eding and Charlotta Enerbäck The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147791 N.B.: When citing this work, cite the original publication. Verma, D., Ekman, A., Bivik Eding, C., Enerbäck, C., (2018), Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, Journal of Investigative Dermatology, 138(5), 1088-1093. https://doi.org/10.1016/j.jid.2017.11.036 Original publication available at: https://doi.org/10.1016/j.jid.2017.11.036 Copyright: Elsevier http://www.elsevier.com/ Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma*a, Anna-Karin Ekman*a, Cecilia Bivik Edinga and Charlotta Enerbäcka *Authors contributed equally aIngrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden Corresponding author: Charlotta Enerbäck Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University SE-581 85 Linköping, Sweden Phone: +46 10 103 7429 E-mail: [email protected] Short title Differential methylation in psoriasis Abbreviations CGI, CpG island; DMS, differentially methylated site; RRBS, reduced representation bisulphite sequencing Keywords (max 6) psoriasis, epidermis, methylation, Wnt, susceptibility, expression 1 ABSTRACT Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability.
    [Show full text]
  • Genetic Analysis of Over One Million People Identifies 535 New Loci Associated with Blood 2 Pressure Traits
    1 Genetic analysis of over one million people identifies 535 new loci associated with blood 2 pressure traits. 3 4 Table of Contents 5 SUPPLEMENTARY TABLES LEGENDS……………………………………………………………………………….…….3 6 SUPPLEMENTARY FIGURES LEGENDS ........................................................................................ 6 7 SUPPLEMENTARY METHODS ................................................................................................... 10 8 1. UK Biobank data .................................................................................................................................... 10 9 2. UKB Quality Control ............................................................................................................................... 10 10 3. Phenotypic data ..................................................................................................................................... 11 11 4. UKB analysis ........................................................................................................................................... 11 12 5. Genomic inflation and confounding ....................................................................................................... 12 13 6. International Consortium for Blood Pressure (ICBP) GWAS .................................................................... 12 14 7. Meta-analyses of discovery datasets ..................................................................................................... 13 15 8. Linkage Disequilibrium calculations ......................................................................................................
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]