Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments Syracuse University SURFACE Physics College of Arts and Sciences 11-21-2008 Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments Gianfranco Vidali Department of Physics, Syracuse University, Syracuse, NY Ling Li Syracuse University J. Roser Syracuse University and NASA Ames E. Congiu Syracuse University and Universita di Catania Follow this and additional works at: https://surface.syr.edu/phy Part of the Physics Commons Recommended Citation Vidali, Gianfranco; Li, Ling; Roser, J.; and Congiu, E., "Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments" (2008). Physics. 505. https://surface.syr.edu/phy/505 This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact [email protected]. Analysis of Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments G. Vidalia, V. Pirronellob, L. Lia, J. Rosera,c, G. Manic´ob, E. Congiua,b, H. Mehld, A. Lederhendlerd, H.B. Peretse, J.R. Brucatof and O. Bihamd a. Physics Department, Syracuse University, Syracuse, NY 13244, USA b. Universit´adi Catania, DMFCI, 95125 Catania, Sicily, Italy c. NASA Ames, Mail Stop 245-6, Moffett Field, CA, 94035, USA d. Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel e. Faculty of Physics, Weizmann Institue of Science, Rehovot 76100, Israel and f. INAF-Osservatorio Astronomico di Capodimonte, Napoli, Italy Abstract The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it enables to explore elementary steps in the heterogeneous catalysis of a simple molecule and due to its applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments, beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the energy barriers of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results are used in order to evaluate the formation rate of H2 on dust grains under the actual conditions present in interstellar arXiv:0708.1647v2 [physics.chem-ph] 21 Nov 2008 clouds. It is found that under typical conditions in diffuse interstellar clouds, amorphous silicate grains are efficient catalysts of H2 formation when the grain temperatures are between 9-14K. This temperature window is within the typical range of grain temperatures in diffuse clouds. It is thus concluded that amorphous silicates are good candidates to be efficient catalysts of H2 formation in diffuse clouds. 1 I. INTRODUCTION Few are the studies of the formation of molecular hydrogen on low temperature sur- faces. One of the pioneering experiments was done in the 1970’s by the group of Giacinto Scoles, who measured the scattering, sticking and energy deposition of atomic and molecular hydrogen beams on the surface of bolometers (semiconductor thin films) at liquid helium temperature [1, 2, 3]. It was found that both the sticking coefficient and the hydrogen recombination rate depend on the coverage of H2 on the target surface. It was also shown that the heat released in the formation of molecular hydrogen causes the desorption of hy- drogen molecules that have been pre-adsorbed on the surface. Thus, a molecule just formed is immediately ejected from the surface. These experiments offered a rare view of the inter- action of hydrogen atoms and molecules in the physical adsorption regime and a connection with processes in interstellar space. However, the sample temperature of 3-4 (K) was well below that of interstellar dust grains, the coverage of the sample with atoms/molecules was high and the ice layer not fully characterized. These conditions made it difficult to obtain a quantitative understanding of actual gas-dust grain processes in astrophysical environments. Molecular hydrogen (H2), the most abundant molecule in the Universe, influences the chemical make-up of the Cosmos [4, 5] and is instrumental in the formation of stars by con- tributing to the cooling during the gravitational collapse of molecular clouds. The challenge of explaining the formation of molecular hydrogen in space begins with the realization that the stabilization of the nascent molecule in the bonding of two (neutral) hydrogen (H) atoms involves the forbidden transition to the ground state. Three-body gas-phase interactions are too rare to contribute significantly to H2 formation in cold clouds [4], but may take place in other environments such as interstellar shocks. Under conditions observed in interstellar − − clouds, other gas-phase routes (such as: H+e → H + hν, H + H → H2 + e; or, less + + + + frequently, H+H → H2 , H2 + H → H2 + H ) do not make enough H2 to counterbalance the known destruction rate due to UV photons. [4]. In the 1960’s, Salpeter and collaborators proposed a model in which H2 formation occurs on the surfaces of interstellar dust grains [6, 7, 8, 9]. These grains are formed in the envelopes of massive late-stars and in novae and supernova explosions. They are made of carbonaceous materials and of silicates. Their sizes exhibit a broad power-law like distribution between 1-100 nm [10, 11, 12]. Observations of scattered, absorbed and emitted starlight, and lab- 2 oratory work, show that in the interstellar medium (ISM), silicate grains are amorphous and mostly of composition (FexMg1−x)2SiO4, where 0 <x< 1 [13]. There is, on average, one dust grain per about 1012 hydrogen atoms, and the grains account for about 1% of the mass of interstellar clouds. Kinematic calculations show that in order to produce enough molecular hydrogen to counterbalance the destruction rate, the catalysis on grain surfaces must be efficient. More specifically, the processes of hydrogen sticking, migration and bond formation on the grains must convert at least about ∼ 30% of the adsorbed hydrogen atoms into molecular form [7]. With some exceptions [14, 15], chemical models that look at the chemical evolution of an interstellar cloud, have largely ignored or underplayed the coupling of gas and dust. However, observations, experiments and calculations are pointing to the fact that the formation of key ISM molecules [such as H2, formaldehyde (H2CO), and methanol (CH3OH)] takes place on dust grains, as gas-phase reactions are too slow in these particular cases [16, 17, 18, 19]. As far as the formation of molecular formation is concerned, there is a great need to know the basic mechanisms of reaction (Langmuir-Hinshelwood, Eley-Rideal or hot atom), characteristic energies for various processes (diffusion and desorption) and kinetic parameters of dust-catalyzed reactions so they can be used in models of interstellar chemistry. It is within this framework that in the late 1990’s we began a series of investigations on the formation of molecular hydrogen on analogues of dust grains [20, 21, 22]. These experi- ments, inspired by Scoles’ work, were aimed at combining tools of surface science, chemical physics and low temperature physics in order to recreate the environmental conditions of the interstellar space and overcome some of the limitations of prior experiments, such as: high fluxes of H, too low sample temperatures and not adequately characterized materials (For a review of early experiments, see Ref. [23]). In practice, the experiments have to be done at low background pressure, low sample temperatures and low fluxes of atoms impinging on the samples. The first two requirements are relatively easily achieved. Even taking special care to obtain fluxes of low energy (200-300K) hydrogen atoms, it is not possible to either produce or detect as low fluxes of atoms as appear in the ISM. Thus, carefully designed the- oretical and computational tools need to be used to simulate the actual processes occurring is the ISM using the results of the experiments. The formation of molecular hydrogen on surfaces has been explored at length in the past, but most of the work has been on characterized surfaces of metals and semiconductors, and 3 at much higher surface temperatures and fluxes (or coverages) than in the regime we are interested in. On low temperature surfaces, efficient recombination can occur only if the mobility of hydrogen is high. There are situations when this does not have to be verified, as in the Eley-Rideal and hot atom mechanisms, in which H atoms from the gas phase directly interact with the target hydrogen atoms or move on the surface at superthermal energy. Such mechanisms have been shown to be working in the interaction of H with H-plated metal [24, 25], silicon [26] and graphite [27] surfaces. Although there are certain interstellar environments where these mechanisms enter into play, the diffuse cloud environment - where the coverage of H atoms on a grain at any given time is very low - is not one of them. Thus, we expect that H atoms in our experiments to experience physical adsorption forces and the dominant mechanism of reaction is expected to be the Langmuir-Hinshelwood reaction. In the experiments, the sample is exposed to well collimated beams of hydrogen (H) and deuterium (D) atoms. The production of HD molecules occurring on the surface of a dust grain analogue is measured both during the irradiation with the beams and during a subsequent temperature programmed desorption (TPD) experiment. In order to disentangle the process of diffusion from the one of desorption, additional experiments are carried out in which molecular species are irradiated on the sample and then are induced to desorb.
Recommended publications
  • Selective Production of Phase-Separable Product from a Mixture of Biomass-Derived Aqueous Oxygenates
    ARTICLE DOI: 10.1038/s41467-018-07593-0 OPEN Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates Yehong Wang 1, Mi Peng2, Jian Zhang1, Zhixin Zhang1, Jinghua An1,3, Shuyan Du1, Hongyu An1,3, Fengtao Fan1, Xi Liu 4,5, Peng Zhai2, Ding Ma 2 & Feng Wang1 1234567890():,; Selective conversion of an aqueous solution of mixed oxygenates produced by biomass fermentation to a value-added single product is pivotal for commercially viable biomass utilization. However, the efficiency and selectivity of the transformation remains a great challenge. Herein, we present a strategy capable of transforming ~70% of carbon in an aqueous fermentation mixture (ABE: acetone–butanol–ethanol–water) to 4-heptanone (4- HPO), catalyzed by tin-doped ceria (Sn-ceria), with a selectivity as high as 86%. Water (up to 27 wt%), detrimental to the reported catalysts for ABE conversion, was beneficial for producing 4-HPO, highlighting the feasibility of the current reaction system. In a 300 h continuous reaction over 2 wt% Sn-ceria catalyst, the average 4-HPO selectivity is main- tained at 85% with 50% conversion and > 90% carbon balance. This strategy offers a route for highly efficient organic-carbon utilization, which can potentially integrate biological and chemical catalysis platforms for the robust and highly selective production of value-added chemicals. 1 State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. 2 College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, China.
    [Show full text]
  • The Tritium Beta-Ray Induced Reactions in Deuterium Oxide Vapor and Hydrogen Or Carbon Monoxide and the Exchange of H-Atoms with Water Molecules
    This dissertation has been microfilmed exactly as received 66-6232 BIBLER, Ned Eugene, 1937- THE TRITIUM BETA-RAY INDUCED REACTIONS IN DEUTERIUM OXIDE VAPOR AND HYDROGEN OR CARBON MONOXIDE AND THE EXCHANGE OF H-ATOMS WITH WATER MOLECULES. The Ohio State University, Ph.D., 1965 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE TRITIUM 3ETA-RAY INDUCED REACTIONS IN DEUTERIUM OXIDE VAPOR AND HYDROGEN OR CARBON MONOXIDE AND THE EXCHANGE OF H-ATOMS WITH WATER MOLECULES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ned Eugene B ib le r , B .S ., M.S * * * * * The Ohio S ta te U n iversity 1965 Approved by Adviser Department of Chemistry ACKNOWLEDGMENTS Several groups were influential in the completion of this work and the culmination of my graduate career at the Ohio State University. I have singled out two who deserve special acknowledg­ ment. I wish to express my appreciation to the members of my family for their understanding and sympathetic guidance during this demanding period. In particular, I thank my wife, Jane, who was a source of encouragement, for her devotion, scientific advice, and unswervingly honest criticism ; and my mother in law, Mrs. Pauline Pycraft, who typed a major portion of the first draft of this thesis. I am indebted to the stimulating research group headed by Dr. R. F. Firestone for many fruitful discussions and altercations on an array of subjects, including the radiation chemistry of water vapor. Specifically, I thank Dr. Firestone for his keen interest and set of high scientific standards which, when applied to the course and completion of this study, made it a maturing and g r a tify in g experience.
    [Show full text]
  • Annual Report 1951 National Bureau of Standards
    Annual Report 1951 National Bureau of Standards Miscellaneous Publication 204 UNITED STATES DEPARTMENT OF COMMERCE Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astint, Director Annual Report 1951 National Bureau of Standards For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 2 5, D. C. Price 50 cents CONTENTS Page 1. General Review 1 2. Electricity 16 Beam intensification in a high-voltage oscillograph 17, Low-temperature dry cells 17, High-rate batteries 17, Battery additives 18. 3. Optics and Metrology 18 The kinorama 19, Measurement of visibility for aircraft 20, Antisubmarine aircraft searchlights 20, Resolving power chart 20, Refractivity 21, Thermal expansivity of aluminum alloys 21. 4. Heat and Power . 21 Thermodynamic properties of materials 22, Synthetic rubber and other high polymers 23, Combustors for jet engines 24, Temperature and composition of flames 25, Engine "knock" 25, Low-temperature physics 26, Medical physics instrumentation 28. 5. Atomic and Radiation Physics 28 Atomic standard of length 29, Magnetic moment of the proton 29, Spectra of artificial elements 31, Photoconductivity of semiconductors 31, Radiation detecting instruments 32, Protection against radiation 32, X-ray equipment 33, Atomic and molecular ions 35, Electron physics 35, Tables of nuclear data 35, Atomic energy levels 36. 6. Chemistry 36 Radioactive carbohydrates 36, Dextran as a substitute for blood plasma 37, Acidity and basicity in organic solvents 37, Interchangeability of fuel gases 38, Los Angeles "smog" 39, Infrared spectra of alcohols 39, Electrodeposi- tion 39, Development of analytical methods 40, Physical constants 42. 7. Mechanics 42 Turbulent flow 43, Turbulence at supersonic speeds 43, Dynamic properties of materials 43, High-frequency vibrations 44, Hearing loss 44, Physical properties by sonic methods 44, Water waves 46, Density currents 46, Precision weighing 46, Viscosity of gases 46, Evaporated thin films 47.
    [Show full text]
  • Synthesis of Phosphine-Functionalized Metal
    DISS. ETH NO. 23507 Understanding and improving gold-catalyzed formic acid decomposition for application in the SCR process A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MANASA SRIDHAR M. Sc. in Chemical Engineering, University of Cincinnati born on 12.12.1987 citizen of India accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr. Oliver Kröcher, co-examiner Prof. Dr. Christoph Müller, co-examiner 2016 “anything can happen, in spite of what you’re pretty sure should happen.” Richard Feynman Table of content Abstract .............................................................................................................................. II die Zusammenfassung ..................................................................................................... VI Chapter 1 Introduction .......................................................................................................... 1 Chapter 2 Methods ............................................................................................................ 15 Chapter 3 Unique selectivity of Au/TiO2 for ammonium formate decomposition under SCR- relevant conditions ............................................................................................................. 25 Chapter 4 Effect of ammonia on the decomposition of ammonium formate and formic acid on Au/TiO2 .............................................................................................................................
    [Show full text]
  • Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic Resonance (NMR) Studies
    Materials 2013, 6, 2464-2482; doi:10.3390/ma6062464 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic Resonance (NMR) Studies Yu Ji, Neil S. Sullivan *, Yibing Tang and Jaha A. Hamida Department of Physics, University of Florida, Gainesville, FL 32611, USA; E-Mails: [email protected] (Y.J.); [email protected] (Y.T.); [email protected] (J.A.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-352-846-3137; Fax: +1-352-392-0523. Received: 9 May 2013; in revised form: 4 June 2013 / Accepted: 5 June 2013 / Published: 17 June 2013 Abstract: Measurements of nuclear spin relaxation times over a wide temperature range have been used to determine the interaction energies and molecular dynamics of light molecular gases trapped in the cages of microporous structures. The experiments are designed so that, in the cases explored, the local excitations and the corresponding heat capacities determine the observed nuclear spin-lattice relaxation times. The results indicate well-defined excitation energies for low densities of methane and hydrogen deuteride in zeolite structures. The values obtained for methane are consistent with Monte Carlo calculations of A.V. Kumar et al. The results also confirm the high mobility and diffusivity of hydrogen deuteride in zeolite structures at low temperatures as observed by neutron scattering. Keywords: nuclear resonance; spin-lattice relaxation; heat capacity; mesoporous structures 1. Introduction There is currently wide interest in the thermodynamic properties of light gases constrained to the interior of microporous structures that include metal organic frameworks [1–3] and classical zeolitic structures [4] because of the potential use of these structures for storage and transport [5–8], and catalytic conversion [9] of light molecular gases (H2, CH4, CO2, CO, etc.).
    [Show full text]
  • Heavy-Water Production Using Amine-Hydrogen Exchange
    HEAVY-WATER PRODUCTION USING AMINE-HYDROGEN EXCHANGE Development of the amine-hydrogen process for heavy-water production involves a large research and development program at CRNL supplemented by contracts with industry and universities. Four major areas of work are: — process design and optimization — process chemistry — deuterium exchange in gas-liquid contactors — materials for construction This article, which is the third in a series to appear in this publication, describes the development of equipment for efficient exchange of deuterium between hydrogen gas and amine liquid. The process flowsheet and the chemistry of aminomethane solu- tions of potassium methylamide catalyst were described previously^ >2). Efficient countercurrent, multistage contacting of liquid amine and hydrogen gas in hot and cold towers are required in this process. The unusually large separation factors possible with amine-hydrogen exchange are an important advantage. A major development program is aimed at the full exploitation of this advantage by achieving rapid exchange in the cold tower. Increasing the difference between the hot and cold tower temperatures decreases the required gas flow rate and number of theoretical plates. As the cold tower temperature is lowered plate efficiency falls, tower fabrication is more expensive and refrigeration costs rise; the range of interest is -100 to 0°F. The upper limit on hot column temperature is set by the vapor pressure of the aminomethane and chemical stability of the catalyst solution. Temperatures up to 160°F are attractive. The exchange reaction HD + CH3NH2 „ » H2 + CH3NHD occurs in the liquid phase a^d consists/of two steps: physical absorption and chemical ^reaction. Mass transfer is controlled by the diffusion of hydrogen in a thin liquid reaction zone near the gas-liquid interface.
    [Show full text]
  • Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS
    Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS Takeshi Ohta Department of Physics & Research Center for Nuclear Physics Osaka University Advisor: Mamoru Fujiwara, Masaru Yosoi, Hideki Kohri 2012 t c je T Ho argDet Pr 2 Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS (LEPS 二重偏極実験の為の偏極重水素化水素標的の開発) 3 Abstract Hadron photoproduction experiments without a polarized target have been car- ried out in the laser-electron photon facility beam-line at SPring-8 (LEPS) since 2000. The hadron photoproduction of the ϕ, K, η, and π0 mesons is studied by using linearly polarized photon beams with energies of Eγ = 1:5 ∼ 2:9 GeV. At the LEPS facility, linearly and circularly polarized photons are produced by Backward- Compton scattering. An experiment for measuring a complete set of spin observables is expected to give important information to investigate the nucleon hidden struc- ture and hadron photoproduction dynamics. Introduction of the polarized target is expected to conduct the LEPS experiment to the next stage. We plan to carry out hadron photoproduction experiments by using polarized photon beams and the po- larized target. We have started to develop the polarized Hydrogen-Deuteride (HD) target since 2005. A polarized HD target is prepared at Research Center for Nuclear Physics Osaka University, and will be installed in the LEPS beam-line at SPring-8. As a first step, we produced the polarized HD target in 2008-2009. The HD gas was fed to a dilution refrigerator, and was solidified. Then, the HD was cooled down to 14 mK with a high magnetic field of 17 T.
    [Show full text]
  • The Primary Process in Formaldehyde Photolysis
    This dissertation has been 65-3890 microfilmed exactly as received McQUIGG, Robert Duncan, 1936- THE PRIMARY PROCESSES IN FORMALDEHYDE PHOTOLYSIS. The Ohio State University Ph.D., 1964 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE PRIMARY PROCESSES IN FORMALDEHYDE PHOTOLYSIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Robert Duncan McQuigg, B.S. ****** The Ohio State University 1964 Approved by Adviser Department of Chemistry ACKNOWLEDGMENT The author wishes to express his appreciation to Professor Jack G. Calvert for suggesting this problem and for his encouragement and instruction during the course of the work. Sincere appreciation is extended to the Petro­ leum Research Fund Advisory Board of the American Chemical Society for the financial support provided under PRF Grant 532-A. ii TABLE OF CONTENTS Page INTRODUCTION ................................... 1 APPARATUS............... 12 Vacuum s y s t e m ............. ................ 12 Photolysis system ......................... 12 Flash discharge system...... ................ 17 EXPERIMENTAL PROCEDURES ......................... l8 Reagents and standards............. 18 Spectral purity of formaldehydes .............. 22 Procedures for typical experiments ............ 25 Procedures for typical experiments with mixtures of CHgO and CDgO ............ 28 DATA AND R E S U L T S ................................. 31 Temperature calibration of reaction cell . 3 I Calibration of filters and cell transmission . 3 I Data from the flash photolysis of CHgO, CDgO, and C H D O ..................... 33 Data from the flash photolysis of mixtures of CHgO and C D g O .............. 38 DISCUSSION OF RESULTS ............................. 46 Photolysis of the pure formaldehydes........... 46 CHgO and C D g O ............................. 46 iii TABLE OF CONTENTS (CONTD.) Page C H D O ' .
    [Show full text]
  • Gas Chromatography of Hydrogen-Deuterium Mixtures
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 3-1960 Gas Chromatography of Hydrogen-Deuterium Mixtures Paul Payson Hunt University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Hunt, Paul Payson, "Gas Chromatography of Hydrogen-Deuterium Mixtures. " PhD diss., University of Tennessee, 1960. https://trace.tennessee.edu/utk_graddiss/2921 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Paul Payson Hunt entitled "Gas Chromatography of Hydrogen-Deuterium Mixtures." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. Hilton A. Smith, Major Professor We have read this dissertation and recommend its acceptance: John W. Prados, Jerome F. Eastham, William E. Bull, John A. Dean Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) January 16, 1960 To the Graduate Council: I am submitting herewith a dissertation wr itten by Paul Payson Hunt entitled "Gas Chromatography of Hydrogen­ Deuterium Mixtures." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy , wi th a ma jor in Chemistry.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect This Document
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) (NISI -CE-175762) HONODEUBITED 112THINE IN N85-27782 THA OUT]!H SOUR SISTEN. 2. ITS DETECTION OM URANUS IT 1.6 RICHCNS (Lowell 9oservatory) 35 p HC I43/11F 101 CSCL 03B Unclas G3/90 21204 MONODEUTERATED METHANE IN THE OUTER SOLAR SYSTEM II. ITS DETECTION ON URANUS AT 1.6 um. C. de Bergh ` 2 , B. L. Lutz''', T. Owen ' `, J. Brault', and J. Chauville2 'Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. 2 Observatoire de Paris. Lowell Observatory. State University of New York at Stony Brook. s National Solar Observatory. m ^ tC^ J Ln r7 n n ^E rJ Page 2 ABSTRACT We have detected the 3v 2 band of CH,D in the spectrum of Uranus recorded with the Fourier Transform Spectrometer (FTS) at the 4-meter Mayall telescope of Kitt Peak National Observatory (KPNO).
    [Show full text]
  • Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures
    ------------------- ~~ --------~------------ Journal of Research of the National Bu reau of Standards Vol. 47, No. 2, August 1951 Resea rch Paper 2228 Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures 1 Harold J. Roge 2 and Robert D. Arnold The vapor pressures of H 2 , ED, and D2 have been measured from near their t riple poin ts to their critical points. The H 2 and D2 samples were catalyzed to or tho-para equilibrium at 20.4 0 K. Tables suitable for in terpolation have been prepared to r epr esen t the r esults both in centimeter-gram-second and in engin eering units. MeasUl"ements of dew-point pressures of severa l binary mixtures have been made at several pressures below atmospheric. Observed pressures were about 3 percent above those predicted by the law of ideal solutions. <t 1. Introduction e-H2 [6]. Likewisc, deuterium catalyzed to eq uilib­ rium at 20.4° Ie (0.022 para-Dz, 0.978 ortho-D2) is :Many papers dealiJlg with the vapor pressures of designaLe d e-D 2• It is worth while Lo emphasize various isotopic varieLies of hydrogen have appeared that e-H2 and e-D2 were in ortho-para equilibrium since Dennison [1] 3 co rrectly explained the behavior only at 20.4 0 Ie, and that the composition did not of ortho and para forms in 1\:)27, and since Urey, change as the temperaLure was raised or lowered Brickwedcle , ancl .Murphy [2] announced the con­ during the course of lhe rneasurements.
    [Show full text]
  • Kinetic Isotope Effect in Low-Energy Collisions Between Hydrogen
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. pubs.acs.org/JCTC Article Kinetic Isotope Effect in Low-Energy Collisions between Hydrogen Isotopologues and Metastable Helium Atoms: Theoretical Calculations Including the Vibrational Excitation of the Molecule Mariusz Pawlak,* Piotr S. Żuchowski, and Piotr Jankowski Cite This: J. Chem. Theory Comput. 2021, 17, 1008−1016 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: We present very accurate theoretical results of Penning ionization rate coefficients of the excited metastable helium atoms (4He(23S) and 3He(23S)) colliding with fi the hydrogen isotopologues (H2, HD, D2) in the ground and rst excited rotational and vibrational states at subkelvin regime. The calculations are performed using the current best ab initio interaction energy surface, which takes into account the nonrigidity effects of the molecule. The results confirm a recently observed substantial quantum kinetic isotope effect (Nat. Chem. 2014, 6, 332−335) and reveal that the change of the rotational or vibrational state of the molecule can strongly enhance or suppress the reaction. Moreover, we demonstrate the mechanism of the appearance and disappearance of resonances in Penning ionization. The additional model computations, with the morphed interaction energy surface and mass, give better insight into the behavior of the resonances and thereby the reaction dynamics under study. Our theoretical findings are compared with all available measurements, and comprehensive data for prospective experiments are provided. 1. INTRODUCTION composition and formation of interstellar clouds and 16,17 A chemical reaction is a fundamental process in chemistry.
    [Show full text]