Kinetic Isotope Effect in Low-Energy Collisions Between Hydrogen

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic Isotope Effect in Low-Energy Collisions Between Hydrogen This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. pubs.acs.org/JCTC Article Kinetic Isotope Effect in Low-Energy Collisions between Hydrogen Isotopologues and Metastable Helium Atoms: Theoretical Calculations Including the Vibrational Excitation of the Molecule Mariusz Pawlak,* Piotr S. Żuchowski, and Piotr Jankowski Cite This: J. Chem. Theory Comput. 2021, 17, 1008−1016 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: We present very accurate theoretical results of Penning ionization rate coefficients of the excited metastable helium atoms (4He(23S) and 3He(23S)) colliding with fi the hydrogen isotopologues (H2, HD, D2) in the ground and rst excited rotational and vibrational states at subkelvin regime. The calculations are performed using the current best ab initio interaction energy surface, which takes into account the nonrigidity effects of the molecule. The results confirm a recently observed substantial quantum kinetic isotope effect (Nat. Chem. 2014, 6, 332−335) and reveal that the change of the rotational or vibrational state of the molecule can strongly enhance or suppress the reaction. Moreover, we demonstrate the mechanism of the appearance and disappearance of resonances in Penning ionization. The additional model computations, with the morphed interaction energy surface and mass, give better insight into the behavior of the resonances and thereby the reaction dynamics under study. Our theoretical findings are compared with all available measurements, and comprehensive data for prospective experiments are provided. 1. INTRODUCTION composition and formation of interstellar clouds and 16,17 A chemical reaction is a fundamental process in chemistry. structure. Hydrogen and helium are the lightest and most abundant External control of its dynamics is crucial to understand many chemical elements in the Universe, while molecular hydrogen physical and chemical phenomena, especially at the quantum is the lightest and the most common molecule.18,19 For level. Recent sophisticated merged beams experiments for low- instance, molecular hydrogen and helium are the prime energy atom−molecule collisions revealed the possibility of 20 − constituents of gas giants. New ground- and space-based controlling molecular reactions.1 10 These experiments were − high-resolution telescopes enable the observation of light groundbreaking achievements in cold chemistry.11 15 The first elements, which was previously inaccessible. Very recently, merged neutral supersonic beams technique was demonstrated 3 Downloaded via 81.190.23.145 on February 10, 2021 at 00:25:14 (UTC). scientists have made the first-ever detection of 2 S helium in in 2012 by the group of Narevicius,1 approaching a collision the atmosphere of one of the planets (WASP-107b) beyond temperature below 10 mK. Narevicius and co-workers 19 the solar system. Soon after, excited metastable helium was − investigated the Penning ionization (PI) reactions by colliding confirmed on other exoplanets.21 29 The measurements of the excited metastable helium atoms 4He* (≡ 4He(23S)), See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. helium absorption signal in exoplanet atmospheres are now contained in one beam, with ground-state molecular hydrogen important markers of a variety of planetary processes. They H2, contained in another beam have become a unique probe for assessing exoplanetary compositions and understanding the formation of exoplanetary He*+ H → He + H+ + e− 22 systems. The observation of long-lived metastable helium atoms has changed the way astronomers look at exoplanets and They observed a few shape resonances by measuring reaction fi ffi has raised the signi cance of theoretical chemistry for rate coe cients, systematically decreasing collision energy astrophysical domains. Undoubtedly, the collisions of 23S from a few tens of kelvins down to millikelvins. In follow-up ff 2 helium with various atomic and molecular partners, especially studies, they focused on the isotope e ect, where the with hydrogen isotopologues, are of primary importance for hydrogen molecule was substituted by hydrogen deuteride fi (HD) and deuterium (D2). This was the rst observation of such an effect in low-energy collisions. It turned out that the Received: October 26, 2020 positions of the resonances were different for the hydrogen Published: January 21, 2021 isotopologues, far from intuitive expectations. The substitution strongly affected the PI process with an order of magnitude increase in the reaction rate coefficient at certain collision energies. This effect may significantly matter to the isotopic © 2021 The Authors. Published by American Chemical Society https://dx.doi.org/10.1021/acs.jctc.0c01122 1008 J. Chem. Theory Comput. 2021, 17, 1008−1016 Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article astrochemistry. It is also worth noting that there are a vibrationally averaged surface, one needs to know a full- considerable number of experimental studies for He* in dimensional surface for a given complex,42 however, the collisions with more complex molecules (for example, surface averaged over the vibrational state v can be obtained hydrogen sulfide,30 nitrous oxide,31 benzene,32 naphthalene,33 approximated43 using a Taylor expansion of the interaction anthracene,33 [2,2]-paracyclophane,34 pyrene,35 chrysene,35 potential V(R, θ, r) with respect to the intramonomer 35 36 37 37 coronene, glycine, anisole, thioanisole, and selenoani- coordinate r, around some reference value rc sole37). ff ⟨⟩θθθ ≈ + ⟨⟩− As was shown in ref 2, the kinetic isotope e ect in the VRjv, (, ) fR01 (, ) fRr (, )( jv,c r ) 4 * collisions between light subsystems (such as He with H2, 1 HD, and D ) is dramatic, fundamentally changing the reactivity +⟨⟩−⟨⟩+fR(,θ )( r2 2 r r r2 ) 2 2 jv,,cc jv (1) of the PI process. A high level of theory is required to evaluate 2 fi θ θ θ ∂ θ ∂ the experimental ndings. The main motivation of our present where f 0(R, )=V(R, , rc), f1(R, )= V(R, , r)/ r at r = rc, fi ff θ ∂2 θ ∂ 2 ⟨ ⟩ ⟨ 2⟩ studies was to con rm the strong isotope e ect in cold and f 2(R, )= V(R, , r)/ r at r = rc. The r j,v and r j,v chemistry reactions based on our recently developed, very symbols denote the averaged values of r and r2 for the 38 fi accurate interaction energy surface. This ab initio surface rovibrational states of H2 de ned by the quantum numbers j includes nonrigidity effects of the molecule, which play an and v. In our investigations, we took r equal to the H−H 38 c important role in low-energy molecular anisotropic collisions. distance averaged over the rovibrational ground state, i.e., rc = ⟨ ⟩ Additionally, this surface also allows us to predict resonance r 0,0 = 1.4487 Bohr. The values of f1 and f 2 can be calculated structures for experimentally uncharted cases. Since we can on the grid of the intermolecular coordinates with the finite- account for nonrigidity effects, complexes with the vibration- difference method. The vibrationally averaged surfaces ally excited hydrogen molecule or its isotopologues can be obtained within this approximation were used in bound-state − 44−46 − 47 − 48 considered. Such complexes have become easier to access calculations for the H2 CO, Ar HF, and N2 HF experimentally due to recent progress in the production and complexes, and an excellent, or at least, very good agreement of 39−41 the control of the excited hydrogen isotopologues. Thus, the theoretical spectra with experimental ones was observed. ffi − in the present work, we compute reaction rate coe cients of For the H2 CO complex, scattering calculations were also 49 the H2/HD/D2 molecules in the ground and excited rotational performed with the surface defined through eq 1, and an 4 (j = 0/1) and vibrational (v = 0/1) states with He*, and excellent agreement with the experimental data50,51 and the 3 additionally with He*. We demonstrate that by changing the full-dimensional results was achieved. ff quantum state of the molecule, one can turn on or o In the present study, we have used the values of the f i particular low-energy resonances, thereby strongly modify the expansion functions, where i = 0, 1, 2, calculated in ref 38. The PI. It enables us better control over reactions in the subkelvin details can be found in that paper, but here we would like to regime. mention that the leading f 0 term was obtained using the coupled cluster method with singles, doubles, and perturbative 2. THEORY triples (CCSD(T)), and improved with a full configuration 2.1. Interaction Energy Surface. Our theoretical interaction (FCI) correction. The f1 and f 2 derivatives were approach consists of two parts: the first is to prepare the calculated with the symmetry-adapted perturbation theory 53 4 * best possible interaction energy surface, and the second is to (SAPT) method. As was demonstrated for the He +H2 perform quantum-dynamical calculations of the PI rate complex, the diagonal Born−Oppenheimer (DBO) correc- ffi * 54 fi coe cients. To parameterize the He +H2 complex, we use tion is signi cantly smaller than other contributions to f 0,so Jacobi coordinates: the distance R between He* and center of we neglected this correction in that work. Moreover, for the θ 4 * 4 * mass (COM) of H2, the angle between the H2 bond and the He + HD and He +D2 complexes, the DBO correction − * 4 * COM He direction, and the distance r between the can be expected to be even smaller than for He +H2 due to hydrogen nuclei. Thus, the full-dimensional energy surface the larger masses of HD and D2 in comparison to H2. Thus, we θ can be written as a function of these coordinates, V(R, , r).
Recommended publications
  • Selective Production of Phase-Separable Product from a Mixture of Biomass-Derived Aqueous Oxygenates
    ARTICLE DOI: 10.1038/s41467-018-07593-0 OPEN Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates Yehong Wang 1, Mi Peng2, Jian Zhang1, Zhixin Zhang1, Jinghua An1,3, Shuyan Du1, Hongyu An1,3, Fengtao Fan1, Xi Liu 4,5, Peng Zhai2, Ding Ma 2 & Feng Wang1 1234567890():,; Selective conversion of an aqueous solution of mixed oxygenates produced by biomass fermentation to a value-added single product is pivotal for commercially viable biomass utilization. However, the efficiency and selectivity of the transformation remains a great challenge. Herein, we present a strategy capable of transforming ~70% of carbon in an aqueous fermentation mixture (ABE: acetone–butanol–ethanol–water) to 4-heptanone (4- HPO), catalyzed by tin-doped ceria (Sn-ceria), with a selectivity as high as 86%. Water (up to 27 wt%), detrimental to the reported catalysts for ABE conversion, was beneficial for producing 4-HPO, highlighting the feasibility of the current reaction system. In a 300 h continuous reaction over 2 wt% Sn-ceria catalyst, the average 4-HPO selectivity is main- tained at 85% with 50% conversion and > 90% carbon balance. This strategy offers a route for highly efficient organic-carbon utilization, which can potentially integrate biological and chemical catalysis platforms for the robust and highly selective production of value-added chemicals. 1 State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. 2 College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, China.
    [Show full text]
  • The Tritium Beta-Ray Induced Reactions in Deuterium Oxide Vapor and Hydrogen Or Carbon Monoxide and the Exchange of H-Atoms with Water Molecules
    This dissertation has been microfilmed exactly as received 66-6232 BIBLER, Ned Eugene, 1937- THE TRITIUM BETA-RAY INDUCED REACTIONS IN DEUTERIUM OXIDE VAPOR AND HYDROGEN OR CARBON MONOXIDE AND THE EXCHANGE OF H-ATOMS WITH WATER MOLECULES. The Ohio State University, Ph.D., 1965 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE TRITIUM 3ETA-RAY INDUCED REACTIONS IN DEUTERIUM OXIDE VAPOR AND HYDROGEN OR CARBON MONOXIDE AND THE EXCHANGE OF H-ATOMS WITH WATER MOLECULES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ned Eugene B ib le r , B .S ., M.S * * * * * The Ohio S ta te U n iversity 1965 Approved by Adviser Department of Chemistry ACKNOWLEDGMENTS Several groups were influential in the completion of this work and the culmination of my graduate career at the Ohio State University. I have singled out two who deserve special acknowledg­ ment. I wish to express my appreciation to the members of my family for their understanding and sympathetic guidance during this demanding period. In particular, I thank my wife, Jane, who was a source of encouragement, for her devotion, scientific advice, and unswervingly honest criticism ; and my mother in law, Mrs. Pauline Pycraft, who typed a major portion of the first draft of this thesis. I am indebted to the stimulating research group headed by Dr. R. F. Firestone for many fruitful discussions and altercations on an array of subjects, including the radiation chemistry of water vapor. Specifically, I thank Dr. Firestone for his keen interest and set of high scientific standards which, when applied to the course and completion of this study, made it a maturing and g r a tify in g experience.
    [Show full text]
  • Annual Report 1951 National Bureau of Standards
    Annual Report 1951 National Bureau of Standards Miscellaneous Publication 204 UNITED STATES DEPARTMENT OF COMMERCE Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astint, Director Annual Report 1951 National Bureau of Standards For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 2 5, D. C. Price 50 cents CONTENTS Page 1. General Review 1 2. Electricity 16 Beam intensification in a high-voltage oscillograph 17, Low-temperature dry cells 17, High-rate batteries 17, Battery additives 18. 3. Optics and Metrology 18 The kinorama 19, Measurement of visibility for aircraft 20, Antisubmarine aircraft searchlights 20, Resolving power chart 20, Refractivity 21, Thermal expansivity of aluminum alloys 21. 4. Heat and Power . 21 Thermodynamic properties of materials 22, Synthetic rubber and other high polymers 23, Combustors for jet engines 24, Temperature and composition of flames 25, Engine "knock" 25, Low-temperature physics 26, Medical physics instrumentation 28. 5. Atomic and Radiation Physics 28 Atomic standard of length 29, Magnetic moment of the proton 29, Spectra of artificial elements 31, Photoconductivity of semiconductors 31, Radiation detecting instruments 32, Protection against radiation 32, X-ray equipment 33, Atomic and molecular ions 35, Electron physics 35, Tables of nuclear data 35, Atomic energy levels 36. 6. Chemistry 36 Radioactive carbohydrates 36, Dextran as a substitute for blood plasma 37, Acidity and basicity in organic solvents 37, Interchangeability of fuel gases 38, Los Angeles "smog" 39, Infrared spectra of alcohols 39, Electrodeposi- tion 39, Development of analytical methods 40, Physical constants 42. 7. Mechanics 42 Turbulent flow 43, Turbulence at supersonic speeds 43, Dynamic properties of materials 43, High-frequency vibrations 44, Hearing loss 44, Physical properties by sonic methods 44, Water waves 46, Density currents 46, Precision weighing 46, Viscosity of gases 46, Evaporated thin films 47.
    [Show full text]
  • Synthesis of Phosphine-Functionalized Metal
    DISS. ETH NO. 23507 Understanding and improving gold-catalyzed formic acid decomposition for application in the SCR process A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MANASA SRIDHAR M. Sc. in Chemical Engineering, University of Cincinnati born on 12.12.1987 citizen of India accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr. Oliver Kröcher, co-examiner Prof. Dr. Christoph Müller, co-examiner 2016 “anything can happen, in spite of what you’re pretty sure should happen.” Richard Feynman Table of content Abstract .............................................................................................................................. II die Zusammenfassung ..................................................................................................... VI Chapter 1 Introduction .......................................................................................................... 1 Chapter 2 Methods ............................................................................................................ 15 Chapter 3 Unique selectivity of Au/TiO2 for ammonium formate decomposition under SCR- relevant conditions ............................................................................................................. 25 Chapter 4 Effect of ammonia on the decomposition of ammonium formate and formic acid on Au/TiO2 .............................................................................................................................
    [Show full text]
  • Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic Resonance (NMR) Studies
    Materials 2013, 6, 2464-2482; doi:10.3390/ma6062464 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic Resonance (NMR) Studies Yu Ji, Neil S. Sullivan *, Yibing Tang and Jaha A. Hamida Department of Physics, University of Florida, Gainesville, FL 32611, USA; E-Mails: [email protected] (Y.J.); [email protected] (Y.T.); [email protected] (J.A.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-352-846-3137; Fax: +1-352-392-0523. Received: 9 May 2013; in revised form: 4 June 2013 / Accepted: 5 June 2013 / Published: 17 June 2013 Abstract: Measurements of nuclear spin relaxation times over a wide temperature range have been used to determine the interaction energies and molecular dynamics of light molecular gases trapped in the cages of microporous structures. The experiments are designed so that, in the cases explored, the local excitations and the corresponding heat capacities determine the observed nuclear spin-lattice relaxation times. The results indicate well-defined excitation energies for low densities of methane and hydrogen deuteride in zeolite structures. The values obtained for methane are consistent with Monte Carlo calculations of A.V. Kumar et al. The results also confirm the high mobility and diffusivity of hydrogen deuteride in zeolite structures at low temperatures as observed by neutron scattering. Keywords: nuclear resonance; spin-lattice relaxation; heat capacity; mesoporous structures 1. Introduction There is currently wide interest in the thermodynamic properties of light gases constrained to the interior of microporous structures that include metal organic frameworks [1–3] and classical zeolitic structures [4] because of the potential use of these structures for storage and transport [5–8], and catalytic conversion [9] of light molecular gases (H2, CH4, CO2, CO, etc.).
    [Show full text]
  • Heavy-Water Production Using Amine-Hydrogen Exchange
    HEAVY-WATER PRODUCTION USING AMINE-HYDROGEN EXCHANGE Development of the amine-hydrogen process for heavy-water production involves a large research and development program at CRNL supplemented by contracts with industry and universities. Four major areas of work are: — process design and optimization — process chemistry — deuterium exchange in gas-liquid contactors — materials for construction This article, which is the third in a series to appear in this publication, describes the development of equipment for efficient exchange of deuterium between hydrogen gas and amine liquid. The process flowsheet and the chemistry of aminomethane solu- tions of potassium methylamide catalyst were described previously^ >2). Efficient countercurrent, multistage contacting of liquid amine and hydrogen gas in hot and cold towers are required in this process. The unusually large separation factors possible with amine-hydrogen exchange are an important advantage. A major development program is aimed at the full exploitation of this advantage by achieving rapid exchange in the cold tower. Increasing the difference between the hot and cold tower temperatures decreases the required gas flow rate and number of theoretical plates. As the cold tower temperature is lowered plate efficiency falls, tower fabrication is more expensive and refrigeration costs rise; the range of interest is -100 to 0°F. The upper limit on hot column temperature is set by the vapor pressure of the aminomethane and chemical stability of the catalyst solution. Temperatures up to 160°F are attractive. The exchange reaction HD + CH3NH2 „ » H2 + CH3NHD occurs in the liquid phase a^d consists/of two steps: physical absorption and chemical ^reaction. Mass transfer is controlled by the diffusion of hydrogen in a thin liquid reaction zone near the gas-liquid interface.
    [Show full text]
  • Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS
    Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS Takeshi Ohta Department of Physics & Research Center for Nuclear Physics Osaka University Advisor: Mamoru Fujiwara, Masaru Yosoi, Hideki Kohri 2012 t c je T Ho argDet Pr 2 Development of the Polarized Hydrogen-Deuteride (HD) Target for Double-Polarization Experiments at LEPS (LEPS 二重偏極実験の為の偏極重水素化水素標的の開発) 3 Abstract Hadron photoproduction experiments without a polarized target have been car- ried out in the laser-electron photon facility beam-line at SPring-8 (LEPS) since 2000. The hadron photoproduction of the ϕ, K, η, and π0 mesons is studied by using linearly polarized photon beams with energies of Eγ = 1:5 ∼ 2:9 GeV. At the LEPS facility, linearly and circularly polarized photons are produced by Backward- Compton scattering. An experiment for measuring a complete set of spin observables is expected to give important information to investigate the nucleon hidden struc- ture and hadron photoproduction dynamics. Introduction of the polarized target is expected to conduct the LEPS experiment to the next stage. We plan to carry out hadron photoproduction experiments by using polarized photon beams and the po- larized target. We have started to develop the polarized Hydrogen-Deuteride (HD) target since 2005. A polarized HD target is prepared at Research Center for Nuclear Physics Osaka University, and will be installed in the LEPS beam-line at SPring-8. As a first step, we produced the polarized HD target in 2008-2009. The HD gas was fed to a dilution refrigerator, and was solidified. Then, the HD was cooled down to 14 mK with a high magnetic field of 17 T.
    [Show full text]
  • The Primary Process in Formaldehyde Photolysis
    This dissertation has been 65-3890 microfilmed exactly as received McQUIGG, Robert Duncan, 1936- THE PRIMARY PROCESSES IN FORMALDEHYDE PHOTOLYSIS. The Ohio State University Ph.D., 1964 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE PRIMARY PROCESSES IN FORMALDEHYDE PHOTOLYSIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Robert Duncan McQuigg, B.S. ****** The Ohio State University 1964 Approved by Adviser Department of Chemistry ACKNOWLEDGMENT The author wishes to express his appreciation to Professor Jack G. Calvert for suggesting this problem and for his encouragement and instruction during the course of the work. Sincere appreciation is extended to the Petro­ leum Research Fund Advisory Board of the American Chemical Society for the financial support provided under PRF Grant 532-A. ii TABLE OF CONTENTS Page INTRODUCTION ................................... 1 APPARATUS............... 12 Vacuum s y s t e m ............. ................ 12 Photolysis system ......................... 12 Flash discharge system...... ................ 17 EXPERIMENTAL PROCEDURES ......................... l8 Reagents and standards............. 18 Spectral purity of formaldehydes .............. 22 Procedures for typical experiments ............ 25 Procedures for typical experiments with mixtures of CHgO and CDgO ............ 28 DATA AND R E S U L T S ................................. 31 Temperature calibration of reaction cell . 3 I Calibration of filters and cell transmission . 3 I Data from the flash photolysis of CHgO, CDgO, and C H D O ..................... 33 Data from the flash photolysis of mixtures of CHgO and C D g O .............. 38 DISCUSSION OF RESULTS ............................. 46 Photolysis of the pure formaldehydes........... 46 CHgO and C D g O ............................. 46 iii TABLE OF CONTENTS (CONTD.) Page C H D O ' .
    [Show full text]
  • Gas Chromatography of Hydrogen-Deuterium Mixtures
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 3-1960 Gas Chromatography of Hydrogen-Deuterium Mixtures Paul Payson Hunt University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Hunt, Paul Payson, "Gas Chromatography of Hydrogen-Deuterium Mixtures. " PhD diss., University of Tennessee, 1960. https://trace.tennessee.edu/utk_graddiss/2921 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Paul Payson Hunt entitled "Gas Chromatography of Hydrogen-Deuterium Mixtures." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. Hilton A. Smith, Major Professor We have read this dissertation and recommend its acceptance: John W. Prados, Jerome F. Eastham, William E. Bull, John A. Dean Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) January 16, 1960 To the Graduate Council: I am submitting herewith a dissertation wr itten by Paul Payson Hunt entitled "Gas Chromatography of Hydrogen­ Deuterium Mixtures." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy , wi th a ma jor in Chemistry.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect This Document
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) (NISI -CE-175762) HONODEUBITED 112THINE IN N85-27782 THA OUT]!H SOUR SISTEN. 2. ITS DETECTION OM URANUS IT 1.6 RICHCNS (Lowell 9oservatory) 35 p HC I43/11F 101 CSCL 03B Unclas G3/90 21204 MONODEUTERATED METHANE IN THE OUTER SOLAR SYSTEM II. ITS DETECTION ON URANUS AT 1.6 um. C. de Bergh ` 2 , B. L. Lutz''', T. Owen ' `, J. Brault', and J. Chauville2 'Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. 2 Observatoire de Paris. Lowell Observatory. State University of New York at Stony Brook. s National Solar Observatory. m ^ tC^ J Ln r7 n n ^E rJ Page 2 ABSTRACT We have detected the 3v 2 band of CH,D in the spectrum of Uranus recorded with the Fourier Transform Spectrometer (FTS) at the 4-meter Mayall telescope of Kitt Peak National Observatory (KPNO).
    [Show full text]
  • Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures
    ------------------- ~~ --------~------------ Journal of Research of the National Bu reau of Standards Vol. 47, No. 2, August 1951 Resea rch Paper 2228 Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures 1 Harold J. Roge 2 and Robert D. Arnold The vapor pressures of H 2 , ED, and D2 have been measured from near their t riple poin ts to their critical points. The H 2 and D2 samples were catalyzed to or tho-para equilibrium at 20.4 0 K. Tables suitable for in terpolation have been prepared to r epr esen t the r esults both in centimeter-gram-second and in engin eering units. MeasUl"ements of dew-point pressures of severa l binary mixtures have been made at several pressures below atmospheric. Observed pressures were about 3 percent above those predicted by the law of ideal solutions. <t 1. Introduction e-H2 [6]. Likewisc, deuterium catalyzed to eq uilib­ rium at 20.4° Ie (0.022 para-Dz, 0.978 ortho-D2) is :Many papers dealiJlg with the vapor pressures of designaLe d e-D 2• It is worth while Lo emphasize various isotopic varieLies of hydrogen have appeared that e-H2 and e-D2 were in ortho-para equilibrium since Dennison [1] 3 co rrectly explained the behavior only at 20.4 0 Ie, and that the composition did not of ortho and para forms in 1\:)27, and since Urey, change as the temperaLure was raised or lowered Brickwedcle , ancl .Murphy [2] announced the con­ during the course of lhe rneasurements.
    [Show full text]
  • Tritium in the Physical and Biological Sciences I
    TRITIUM Proceedings of a Symposium, Vienna, in the 3-10 May 1961 Physical and Biological Sciences Volume I INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA 1962 . TRITIUM IN THE PHYSICAL AND BIOLOGICAL SCIENCES VOL. I. The following States are Members of the International Atomic Energy Agency: AFGHANISTAN ISRAEL ALBANIA ITALY ARGENTINA JAPAN . AUSTRALIA REPUBLIC OF KOREA AUSTRIA LEBANON BELGIUM LUXEMBOURG BRAZIL MALI BULGARIA MEXICO BURMA MONACO BYELORUSSIAN SOVIET SOCIALIST MOROCCO REPUBLIC NETHERLANDS CAMBODIA NEW ZEALAND CANADA NICARAGUA CEYLON NORWAY CHILE PAKISTAN CHINA PARAGUAY COLOMBIA PERU CONGO (LEOPOLDVILLE) PHILIPPINES CUBA POLAND CZECHOSLOVAK SOCIALIST PORTUGAL REPUBLIC ROMANIA DENMARK SENEGAL DOMINICAN REPUBLIC SOUTH AFRICA ECUADOR SPAIN EL SALVADOR SUDAN ETHIOPIA SWEDEN FINLAND SWITZERLAND FRANCE THAILAND FEDERAL REPUBLIC OF GERMANY TUNISIA GHANA TURKEY GREECE UKRAINIAN SOVIET SOCIALIST GUATEMALA REPUBLIC HAITI UNION OF SOVIET SOCIALIST HOLY SEE REPUBLICS HONDURAS UNITED ARAB REPUBLIC HUNGARY UNITED KINGDOM OF GREAT ICELAND BRITAIN AND NORTHERN IRELAND INDIA UNITED STATES OF AMERICA INDONESIA VENEZUELA IRAN VIET-NAM IRAQ YUGOSLAVIA The Agency's Statute was approved on 26 October 1956 at an international conference held at United Nations headquarters, New York, and the Agency camc into being when the Statute entered into force on 29 July 1957. The first session of the General Conference was held in Vienna, Austria, the permanent seat of the Agency, in October, 1957. The main objective of the Agency is "to accelerate and enlarge
    [Show full text]