Products and Drug Discovery Services July 2013

Total Page:16

File Type:pdf, Size:1020Kb

Products and Drug Discovery Services July 2013 Products and Drug Discovery Services July 2013 Ubiquigent Ltd provides high quality Services / HTS Assay Development reagents, kits, and drug discovery services to the research community Ubiquigent offers expert custom services to researchers interested in ubiquitin/ to help investigators unravel the ubiquitin-like protein (Ubl) cascade drug discovery. We have access to a suite of complexity of, and pursue new thera- automation robotics to help us deliver the highest quality services to you spe- peutic target opportunities across the cifically designed to help accelerate your drug discovery efforts in this field. ubiquitin cascade. The Company is located adjacent to the Medical Research Council Protein Phos- phorylation and Ubiquitylation Unit (PPU), based at the University of Dundee, Scotland, profiler™ NEW HTS Compatible Assay Kits DUB UK. This provides Ubiquigent with access to Compound Screening Service state-of-the-art services and capabilities HTS compatible assay kits have been devel- within both the PPU and other departments oped to therapeutically relevant ubiquitin sys- Ubiquigent can help you with your DUB (deu- of the College of Life Sciences. The PPU is tem targets including: Inducer of LDL (Low biquitylase) drug discovery programmes by Density Lipoprotein) Receptor (IDOL)-cataly- one of Ubiquigent’s founding partners. determining the selectivity and potency of your sed LDLR (LDL Receptor) substrate ubiquity- inhibitors. We offer the DUBprofiler service in ei- lation and CHIP autoubiquitylation assays. ther single concentration profiling or IC50 analy- sis mode. HTS Compatible WHAT YOU DO: INSIDE Custom Assay Development • Send us your compound(s). Services As pathways and functions are unraveled, • Request single concentration profiling and/ new and attractive ubiquitin/Ubl cascade drug or IC50 analysis (electronic submission). Kits discovery targets are coming to light with rel- evance across many key therapeutic areas. WHAT WE DO: With access to a wide range of reagents and NEW >> HTS Assay Kits benefiting from our experience working with • Determine the selectivity and specificity of these pathways, Ubiquigent’s Custom Assay your deubiquitylase (DUB) inhibitor lead E1 Activating Enzymes Development team supports pharmaceutical compound(s). and biotechnology companies in translating • Electronically report fully quality con- E2 Conjugating Enzymes these discoveries into lead programmes. trolled data to you (single concentration % activities or IC50s). E3 Ligases We will work closely and collaboratively with you throughout our partnership. Our approach SERVICE HIGHLIGHTS: is highly flexible; from providing high quality Deconjugating Enzymes activity validated reagents to full-scale proj- • 35 DUBs on the panel and expanding. ect outsourcing developing required screen- • Any scale and combination of screening Ubiquitin/Ubl Binding Proteins ing and deconvolution assays and supplying available; compound(s) vs DUB(s). the reagents to enable you to conduct your • 2 week service cycle. Ubiquitin/Ubl Modifiers, subsequent HTS campaign in-house. Derivatives and Substrates Ubiquigent have successfully developed and DUBprofiler™-HT Cell Lysates delivered HTS-compatible assays and kits enabling leading pharmaceutical compa- Ubiquigent offers DUBprofiler-HT for the screen- nies to conduct screening campaigns against ing of larger numbers of compound (>50) ver- Kinases ubiquitin system targets (DUBs, E3s and oth- sus the DUBprofiler panel. In this service we can ers) of high therapeutic value. Furthermore offer high precision and accuracy ultra-low Antibodies Ubiquigent has developed and supplied many volume compound dispensing (down to 2.5 deconvolution and specificity profiling as- nl) to enable addition of the assay reagents says to help characterize the hits from these directly to the compound in 100% DMSO. This screens. A number of our assays have been Please visit us at is particularly suited to screens where com- developed from first principles starting with pound solubility is a concern. www.ubiquigent.com little or no data from the literature to guide the for the latest information on construction of the assay. Ubiquigent can re- new products and services. search, design, manage and deliver the entire programme to help you to achieve success in your ubiquitin system HTS campaigns. Ubiquigent Ltd - Linking Ubiquitin Research to Drug Discovery www.ubiquigent.com The Ubiquitin Cascade Product Categories are web-interactive Kinases E1 E2 E3 DCE Ub/Ubl Anti-Ub-conjugate Anti-Ub-conjugate DCE UBP DCE: deconjugating enzyme Ub: ubiquitin Ubl: ubiquitin-like protein Protein Ubiquitylation: Ubiquitylation, like phosphorylation, de- uitin chains and deubiquitylases may act on Although still a post-translational modi- scribes a reversible post-translational pro- either mono-ubiquitylated or poly-ubiqui- fication, albeit involving a functional protein tein modification. Ubiquitylation or ‘ubiquit- tylated substrates to remove the ubiquitin rather than a functional group, ubiquityla- ination’ may control the protein substrate’s monomers or chains respectively. tion is a much more complex process than destiny – in respect of its turnover – or its The enzymes of the ubiquitylation pathway phosphorylation mainly due to the ability of signalling functionality. It is a process that play a pivotal role in a number of cellular ubiquitin to form polyubiquitin chains of a refers to the covalent attachment - through processes including, but not exclusively, the variety of different linkage types and com- it’s C-terminus - of a small, 76 amino acid targeted proteasomal degradation of sub- plexity, but also because there are further protein called ubiquitin to the epsilon-amino strate proteins. Three classes of enzymes are related ubiquitin-like (Ubl; including SUMO, group of a lysine residue residing within a involved in the process of substrate ubiqui- NEDD8, ISG15, and FAT10) proteins that substrate protein – which may also be anoth- tylation; activating enzymes (E1s), conjugat- may each follow a similar specific enzymatic er ubiquitin molecule. This results in either ing enzymes (E2s) and protein ligases (E3s). cascade but resulting in different outcomes mono- or poly-ubiquitylation of the substrate; Ubiquitylation of substrate proteins depends for the Ubl modified target substrate. At a the latter being where chains of ubiquitin are on the sequential action of these three en- further level of system complexity modifica- attached to the substrate protein. Ubiquitin zymes. In an ATP-dependent first step, an E1 tions of either the E3 ligase or the substrate may also form chains through attachment enzyme forms a thioester linkage with ubiq- may alter their ability to modify substrates to the amino terminus of a further ubiquitin uitin which is then transferred to the sulphy- or themselves be modified; for example by to generate linear poly-ubiquitin chains. The dryl group of the active-site cysteine on an NEDDylation (NEDD8 being a further Ubl) in structure of the chain determines whether E2 enzyme forming a ubiquitin-thioester in- the case of E3 ligases or phosphorylation in a ubiquitylated protein modulates a specific termediate. An E3 then acts as an adaptor to the case of both E3 ligases and substrates. signalling cascade or may become degraded bind both substrate protein and E2 ‘loaded’ in a proteasomal or lysosomal dependent with ubiquitin. The E3 facilitates isopeptide manner. Mono-ubiquitylated proteins may bond formation between ubiquitin and the be further ubiquitylated to form polyubiq- substrate protein. 2 Ubiquigent Ltd - Linking Ubiquitin Research to Drug Discovery www.ubiquigent.com E2scan™ Kit version 2 NEW - now containing 34 E2s The E2scan Kit is designed to facilitate the identification of E2 conjugating Why use the E2scan kit? enzymes which support the ubiquitylation of substrate proteins catalysed by an E3 ligase and/or the auto-ubiquitylation of the E3 ligase itself. • E2 conjugating enzymes can be critical in determining the ubiquitin chain linkage type(s) generated in a ubiquitylation 1 2 3 4 5 6 7 8 9 10 11 12 reaction. A 2A 2B 2C 2D1 2D2 2D3 2D4 2E1 2E2 2E3 2F 2G1 Kit Enzymes • The linkage type can determine the fate of the ubiquitylated B 2G2 2H 2I 2J1 2J2 2K 2L3 2L6 2M 2N 2N/2V1 2N/2V2 substrate; for example to be degraded or to function in a sig- Kit Controls C 2Q 2Q2 2R1 2R2 2S 2T 2V1 2V2 2W 2Z nalling capacity (Ye and Rape (2009)). BFR Buffer scan D • Discovery of novel aspects to E2 functionality: The E2 kit 2D4 Positive Control E 2A 2B 2C 2D1 2D2 2D3 2D4 2E1 2E2 2E3 2F 2G1 was used to identify E2s that partner RNF4 in polySUMO ubiquitylation and it was discovered that Ube2W (Ubc16) is F 2G2 2H 2I 2J1 2J2 2K 2L3 2L6 2M 2N 2N/2V1 2N/2V2 an E2 with - a previously unknown - specific protein amino G 2Q 2Q2 2R1 2R2 2S 2T 2V1 2V2 2W 2Z terminal monoubiquitylation activity (Tatham et al. 2013). H BFR BFR 2D4 2D4 E2scan experiments facilitate: • the rapid identification of the E2s that couple with your E3 The kit contains an E2scan plate - a panel of 34 E2 conjugating enzymes arrayed (auto and/or substrate ubiquitylation modes) in duplicate across a 96-well plate - plus all the components (E1 enzyme, con- trol E3 ligase, ubiquitin, ATP, assay buffer) required to perform a complete • new insights regarding the E3 ligase and/or the substrate substrate ubiquitylation or auto-ubiquitylation assay using your E3 ligase and/ • the development of assays for the E3 ligase or E3 ligase/substrate combination of choice. Through the addition of a sub- strate mix (E1, E3, substrate, and ubiquitin) and then ATP to the wells of an References E2scan plate, screen the E2 conjugating enzyme panel in just one hour. Reaction Ye and Rape (2009) Nat Rev Mol Cell Biol 10, 755-764. products may be analysed as required, for example by SDS-PAGE or Western Tatham MH, Plechanovová A, Jaffray EG, Salmen H, Hay RT (2013) Biochem J 453, 137-145. blotting. E2scan Kit version 2 Cat. # 67-0005-001 1 Kit £345 DUBscan™ Kit The DUBscan kit has been flexibly designed for many potential applications.
Recommended publications
  • UBE2M (Mouse; Full Length), Pab
    UBE2M (mouse; full length), pAb Alternate Names: Nedd8-conjugating enzyme, Ubc12, UBC-RS2, UBC12. Cat. No. 68-0025-100 Quantity: 100 µg Lot. No. 30262 Storage: -20˚C FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS CERTIFICATE OF ANALYSIS Page 1 of 2 This antibody was developed and Physical Characteristics validated by the Medical Research Council Protein Phosphorylation and Quantity: 100 μg Formulation: phosphate-buffered Ubiquitylation Unit (University of saline Dundee, Dundee, UK). Concentration: to be provided on shipping Specificity:detects Ube2M at ~22 kDa Source: sheep polyclonal antibody Reactivity: mouse; other species not Background tested. Immunogen: mouse Ube2M (residues 1-183) [GST-tagged] Stability/Storage: 12 months at The enzymes of the NEDDylation pathway -20˚C; aliquot as required play a pivotal role in a number of cellular Purification:affinity-purified using processes including the indirect regula- immobilized immunogen tion and targeting of substrate proteins for proteasomal degradation. Three classes of enzymes are involved in the process of NEDDylation; the ubiquitin-like activating Research Applications and Quality Assurance enzyme APP-BP1/Uba3 (E1), the ubiquitin- Western Immunoblotting: Immunoprecipitation: like conjugating enzymes (E2s) and pro- Use 0.5 µg/ml Not tested tein ligases (E3s). UBE2M is a member of the E2 conjugating enzyme family and the gene for human UBE2M was first de- scribed by Osaka et al. (1998) and shares Dot Blotting Analysis: By dot blot assay the specific 42% sequence identity with yeast UBE2M. recognition of recombinant A trapped ubiquitin like activation complex Ube2M protein was observed has been described for the NEDD8 pathway under native and denaturing comprising, the E1 APP-BP1/Uba3, two conditions when probed with NEDD8 molecules, UBE2M and MgATP.
    [Show full text]
  • Organ Level Protein Networks As a Reference for the Host Effects of the Microbiome
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Organ level protein networks as a reference for the host effects of the microbiome 2 3 Robert H. Millsa,b,c,d, Jacob M. Wozniaka,b, Alison Vrbanacc, Anaamika Campeaua,b, Benoit 4 Chassainge,f,g,h, Andrew Gewirtze, Rob Knightc,d, and David J. Gonzaleza,b,d,# 5 6 a Department of Pharmacology, University of California, San Diego, California, USA 7 b Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 8 California, USA 9 c Department of Pediatrics, and Department of Computer Science and Engineering, University of 10 California, San Diego California, USA 11 d Center for Microbiome Innovation, University of California, San Diego, California, USA 12 e Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State 13 University, Atlanta, GA, USA 14 f Neuroscience Institute, Georgia State University, Atlanta, GA, USA 15 g INSERM, U1016, Paris, France. 16 h Université de Paris, Paris, France. 17 18 Key words: Microbiota, Tandem Mass Tags, Organ Proteomics, Gnotobiotic Mice, Germ-free Mice, 19 Protein Networks, Proteomics 20 21 # Address Correspondence to: 22 David J. Gonzalez, PhD 23 Department of Pharmacology and Pharmacy 24 University of California, San Diego 25 La Jolla, CA 92093 26 E-mail: [email protected] 27 Phone: 858-822-1218 28 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 29 Abstract 30 Connections between the microbiome and health are rapidly emerging in a wide range of 31 diseases.
    [Show full text]
  • The HECT Domain Ubiquitin Ligase HUWE1 Targets Unassembled Soluble Proteins for Degradation
    OPEN Citation: Cell Discovery (2016) 2, 16040; doi:10.1038/celldisc.2016.40 ARTICLE www.nature.com/celldisc The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation Yue Xu1, D Eric Anderson2, Yihong Ye1 1Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 2Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA In eukaryotes, many proteins function in multi-subunit complexes that require proper assembly. To maintain complex stoichiometry, cells use the endoplasmic reticulum-associated degradation system to degrade unassembled membrane subunits, but how unassembled soluble proteins are eliminated is undefined. Here we show that degradation of unassembled soluble proteins (referred to as unassembled soluble protein degradation, USPD) requires the ubiquitin selective chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and the proteasome. At the ubiquitin ligase level, the previously identified protein quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and the related enzymes only process a subset of unassembled soluble proteins. We identify the homologous to the E6-AP carboxyl terminus (homologous to the E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase for substrates bearing unshielded, hydrophobic segments. We used a stable isotope labeling with amino acids-based proteomic approach to identify endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form multi-protein com- plexes that function in the nucleus although HUWE1 itself is cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated ubiquitination and degradation, suggesting that USPD occurs primarily in the cytoplasm.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Ubiquitination Is Not Omnipresent in Myeloid Leukemia Ramesh C
    Editorials Ubiquitination is not omnipresent in myeloid leukemia Ramesh C. Nayak1 and Jose A. Cancelas1,2 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and 2Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, OH, USA E-mail: JOSE A. CANCELAS - [email protected] / [email protected] doi:10.3324/haematol.2019.224162 hronic myelogenous leukemia (CML) is a clonal tination of target proteins through their cognate E3 ubiq- biphasic hematopoietic disorder most frequently uitin ligases belonging to three different families (RING, Ccaused by the expression of the BCR-ABL fusion HERCT, RING-between-RING or RBR type E3).7 protein. The expression of BCR-ABL fusion protein with The ubiquitin conjugating enzymes including UBE2N constitutive and elevated tyrosine kinase activity is suffi- (UBC13) and UBE2C are over-expressed in a myriad of cient to induce transformation of hematopoietic stem tumors such as breast, pancreas, colon, prostate, lym- cells (HSC) and the development of CML.1 Despite the phoma, and ovarian carcinomas.8 Higher expression of introduction of tyrosine kinase inhibitors (TKI), the dis- UBE2A is associated with poor prognosis of hepatocellu- ease may progress from a manageable chronic phase to a lar cancer.9 In leukemia, bone marrow (BM) cells from clinically challenging blast crisis phase with a poor prog- pediatric acute lymphoblastic patients show higher levels nosis,2 in which myeloid or lymphoid blasts fail to differ- of UBE2Q2
    [Show full text]
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein UBE2R2
    Catalogue # Aliquot Size U235-30H-20 20 µg U235-30H-50 50 µg UBE2R2 (UBC3B) Protein Recombinant protein expressed in E.coli cells Catalog # U235-30H Lot # J617 -4 Product Description Purity Recombinant human UBE2R2 (UBC3B) (2-end) was expressed in E. coli cells using an N-terminal His tag. The gene accession number is NM_017811 . The purity of UBE2R2 (UBC3B) was Gene Aliases determined to be >90% by densitometry. CDC34B; E2-CDC34B; UBC3B Approx. MW 32 kDa . Formulation Recombinant protein stored in 50mM sodium phosphate, pH 7.0, 300mM NaCl, 150mM imidazole, 0.1mM PMSF, 0.25mM DTT, 25% glycerol. Storage and Stability o Store product at –70 C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background UBE2R2 (UBC3B) or ubiquitin-conjugating enzyme E2R 2 encodes a protein similar to the E2 ubiquitin conjugating enzyme UBC3/CDC34. CK2-dependent phosphorylation of this ubiquitin-conjugating enzyme functions by regulating beta-TrCP substrate recognition and induces UBE2R2 (UBC3B) Protein its interaction with beta-TrCP therby enhancing beta- Recombinant protein expressed in E. coli cells catenin degradation. CK2-dependent phosphorylation of CDC34 and UBC3B functions by regulating BTRC substrate Catalog Number U235-30H recognition (1). UBE2R2 complements a yeast cdc34 Specific Lot Number J617-4 temperature-sensitive mutant. Deletion and site-directed Purity >90% mutagenesis demonstrated that CK2 phosphorylated Concentration 0.1 µg/ µl Stability 1yr at –70 oC from date of shipment UBE2R2 in the C-terminal domain at serine-233; Storage & Shipping Store product at –70 oC.
    [Show full text]
  • Material Data Sheet
    MATERIAL DATA SHEET Recombinant Human His6 UBE2N/UBE2V2 Complex Cat. # E2­666 Ubiquitin conjugating Enzyme E2N (UBE2N), also known as Ubiquitin conjugating Enzyme 13 (Ubc13), forms a functional complex with the catalytically inactive UBE2V2 (human homologue of yeast MMS2) protein (1). Human UBE2N/Ubc13 shares 100% and 99% amino acid (aa) sequence identity with the mouse and rat orthologs, respectively, while human UBE2V2 shares 99% aa sequence identity with its mouse and rat orthologs. The UBE2N/UBE2V2 Complex functions with Ubiquitin ligases (E3s), including RNF111 and RNF8, to synthesize Lys63­linked Ubiquitin chains (2,3) that can either be unanchored or attached to target proteins (4, 5). The UBE2N/UBE2V2 complex has important roles in facilitating responses to various forms of DNA damage (2, 6). Product Information Quantity: 100 µg | 50 µg MW: 18 kDa (UBE2N), 17 kDa (UBE2V2) Source: E. coli­derived Contains an N­terminal 6­His tag Accession # P61088 (UBE2N)/Q15819 (UBE2V2) Stock: 0.88 mg/ml (25 μM) in 50 mM HEPES pH 7.5, 200 mM NaCl, 10% Glycerol (v/v), 2 mM TCEP Purity: >95%, by SDS­PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain. Rev. 5/22/2014 Page 1 of 2 www.bostonbiochem.com Boston Biochem products are available via the R&D Systems distributor network. USA & CANADA Tel: (800) 343-7475 EUROPE Tel: +44 (0)1235 529449 CHINA Tel: +86 (21) 52380373 Use & Storage Use: Recombinant Human His6­UBE2N/UBE2V2 Complex is a member of the Ubiquitin conjugating (E2) enzyme family that receives Ubiquitin from a Ubiquitin activating (E1) enzyme and subsequently interacts with a Ubiquitin ligase (E3) to conjugate Ubiquitin to substrate proteins.
    [Show full text]
  • The Ubiquitination Enzymes of Leishmania Mexicana
    The ubiquitination enzymes of Leishmania mexicana Rebecca Jayne Burge Doctor of Philosophy University of York Biology October 2020 Abstract Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. Although 20 deubiquitinating enzymes (DUBs) have been partially characterised in Leishmania mexicana, little is known about the role of E1 ubiquitin-activating (E1), E2 ubiquitin- conjugating (E2) and E3 ubiquitin ligase (E3) enzymes in this parasite. Using bioinformatic methods, 2 E1, 13 E2 and 79 E3 genes were identified in the L. mexicana genome. Subsequently, bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed that the E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for successful promastigote to amastigote differentiation and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, revealed a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a was found to load ubiquitin onto UBC2, allowing UBC2- UEV1 to form K63-linked di-ubiquitin chains in vitro. UBC2 was also shown to cooperate with human E3s RNF8 and BIRC2 in vitro to form non-K63-linked polyubiquitin chains, but association of UBC2 with UEV1 inhibits this ability.
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]