UBE2H Protein UBE2H Protein

Total Page:16

File Type:pdf, Size:1020Kb

UBE2H Protein UBE2H Protein Catalogue # Aliquot Size U223-30H-20 20 µg U223-30H-50 50 µg UBE2H Protein Full length recombinant protein expressed in E. coli cells Catalog # U223-30H Lot # J581 -2 Product Description Purity Recombinant full length human UBE2H was expressed in E. coli cells using an N-terminal His tag. The gene accession number is NM_003344 . The purity of UBE2H was determined Gene Aliases to be >95% by densitometry. Approx. MW 21 kDa . E2-20K; UBC8; UBCH; UBCH2 Formulation Recombinant protein stored in 50mM sodium phosphate, pH 7.0, 300mM NaCl, 150mM imidazole, 0.1mM PMSF, 0.25mM DTT, 25% glycerol. Storage and Stability Store product at –70 oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background UBE2H or ubiquitin-conjugating enzyme E2H is a member of the E2 ubiquitin-conjugating enzyme family which is located on chromosome 7 (1). UBE2H is known to act on histones and cytoskeletal proteins, both involved in the UBE2H Protein degenerative pathway of the motor neuron. UBE2H Full length recombinant protein expressed in E. coli cells expression is increased during erythroid differentiation of hCD34(+) cells. Tal1 transcription factor, which is essential Catalog Number U223-30H for the development of the hematopoietic system and Specific Lot Number J581-2 plays a role during definitive erythropoiesis in the adult, Purity >95% activates UBE2H expression, whereas Tal1 knock-down Concentration 0.1µg/ µl Stability 1yr At –70 oC from date of shipment reduced UBE2H expression and ubiquitin transfer activity Storage & Shipping Store product at –70 oC. For optimal (2). storage, aliquot target into smaller quantities after centrifugation and References store at recommended temperature. For most favorable performance, 1. Kaiser, P. et.al: Human ubiquitin-conjugating enzyme avoid repeated handling and homologous to yeast UBC8. J. Biol. Chem. 269: 8797-8802, multiple freeze/thaw cycles. Product 1994. shipped on dry ice. 2. Lausen J,Targets of the Tal1 transcription factor in erythrocytes: E2 ubiquitin conjugase regulation by Tal1. J Biol Chem. 2010 Feb 19;285(8):5338-46. To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: [email protected] www.signalchem.com FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS. .
Recommended publications
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • The MALDI TOF E2/E3 Ligase Assay As an Universal Tool for Drug Discovery in the Ubiquitin Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/224600; this version posted November 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The MALDI TOF E2/E3 ligase assay as an universal tool for drug discovery in the ubiquitin pathway Virginia De Cesare*1, Clare Johnson2, Victoria Barlow2, James Hastie2 Axel Knebel1 and 5 Matthias Trost*1,3 1MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St, Dundee, DD1 5EH, Scotland, UK; 2MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dow St, Dundee, DD1 5EH, Scotland, UK; . 3Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, 10 NE2 1HH, UK *To whom correspondence should be addressed: Virginia De Cesare ([email protected]) Matthias Trost ([email protected]) 15 Contact information: V.D.C.: MRC PPU, University of Dundee, Dow St, Dundee, DD1 5EH, Phone: +44 1382 20 85822 M.T.: Newcastle University, Institute for Cell and Molecular Biosciences, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, Phone: +44 191 2087009 Key words: Ubiquitin, E3 ligase, E2 enzyme, MALDI TOF, mass spectrometry, drug 25 discovery, high-throughput, assay, MDM2, HOIP, ITCH 1 bioRxiv preprint doi: https://doi.org/10.1101/224600; this version posted November 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Mechanism of Ssph1: a Bacterial Effector Ubiquitin Ligase
    © Copyright 2018 Matthew J. Cook Mechanism of SspH1: A Bacterial Effector Ubiquitin Ligase Hijacks the Eukaryotic Ubiquitylation Pathway Matthew J. Cook A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2018 Reading Committee: Peter S Brzovic, Chair Suzanne Hoppins Ning Zheng Program Authorized to Offer Degree: Biochemistry University of Washington Abstract Mechanism of SspH1: A Bacterial Effector Ubiquitin Ligase Hijacks the Eukaryotic Ubiquitylation Pathway Matthew J. Cook Chair of the Supervisory Committee: Peter S Brzovic Department of Biochemistry Bacterial effector proteins promote the pathogenicity of bacteria by interacting with host cell proteins and modulating signaling pathways in the host cell. Some bacterial effectors hijack the eukaryotic ubiquitylation pathway to promote pathogenicity, despite the absence of the pathway in prokaryotes. One family of bacterial effectors, the IpaH-SspH family of E3 ligases, are unrelated in sequence or structure to eukaryotic E3s. This work elucidates key aspects in the structure and mechanism of one member of the IpaH-SspH family from Salmonella typhimurium, SspH1. Biophysical and biochemical methods were used to examine the structure of SspH1 in solution and the interactions between SspH1 and components of the eukaryotic ubiquitylation pathway, with an emphasis on the mechanisms of ubiquitin transfer from the E2 active site to the SspH1 active site, and from the SspH1 active site to substrate. Important results of this work include 1) a reanalysis of existing crystal structures of IpaH-SspH1 E3 domains leading to a new way of characterizing the structural organization of the SspH1 E3 domain, revealing two independent subdomains.
    [Show full text]
  • Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
    Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • SAHA) on the Host Transcriptome and Proteome and Their Implications for HIV Reactivation from Latency
    Antiviral Research 123 (2015) 78–85 Contents lists available at ScienceDirect Antiviral Research journal homepage: www.elsevier.com/locate/antiviral Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency Cory H. White a,b, Harvey E. Johnston c,d, Bastiaan Moesker e, Antigoni Manousopoulou d,e, ⇑ David M. Margolis f, Douglas D. Richman b,g,h, Celsa A. Spina b,g, Spiros D. Garbis c,d,e, ,1, ⇑ ⇑ Christopher H. Woelk e, ,1, Nadejda Beliakova-Bethell h, ,1 a Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA b San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA c Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK d Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK e Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK f Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA g Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA h Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA article info abstract Article history: Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a ‘‘shock and kill” Received 16 May 2015 strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA (‘‘shock”), Revised 22 August 2015 treatment with SAHA did not result in a reduction of reservoir size (‘‘kill”).
    [Show full text]
  • Supporting Information
    Supporting Information Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma Anahita Kyani+,[a] Shuzo Tamura+,[a] Suhui Yang+,[a] Andrea Shergalis+,[a] Soma Samanta,[a] Yuting Kuang,[a] Mats Ljungman,[b] and Nouri Neamati*[a] cmdc_201700629_sm_miscellaneous_information.pdf Author Contributions A.K. Data curation: Lead; Formal analysis: Lead; Investigation: Equal; Writing ± original draft: Lead; Writing ± review & editing: Equal S.T. Data curation: Equal; Formal analysis: Equal; Writing ± review & editing: Equal S.Y. Data curation: Equal; Formal analysis: Equal; Writing ± original draft: Supporting; Writing ± review & editing: Equal A.S. Data curation: Equal; Formal analysis: Supporting; Writing ± review & editing: Equal S.S. Data curation: Supporting; Writing ± review & editing: Supporting Y.K. Data curation: Supporting; Writing ± review & editing: Supporting M.L. Conceptualization: Supporting; Formal analysis: Supporting; Project administration: Supporting; Resources: Equal; Supervision: Supporting; Writing ± review & editing: Supporting N.N. Conceptualization: Lead; Data curation: Lead; Funding acquisition: Lead; Project administration: Lead; Resour- ces: Lead; Supervision: Lead; Writing ± review & editing: Supporting. Table of Contents Table S1. 35G8 analogues available from the NCI database ............................................................................ S2 Figure S1. Docking poses of 35G8 analogues.................................................................................................
    [Show full text]
  • Effect of Β-Hydroxy-Β-Methylbutyrate on Mirna Expression in Differentiating Equine Satellite Cells Exposed to Hydrogen Peroxide Karolina A
    Chodkowska et al. Genes & Nutrition (2018) 13:10 https://doi.org/10.1186/s12263-018-0598-2 RESEARCH Open Access Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide Karolina A. Chodkowska, Anna Ciecierska, Kinga Majchrzak, Piotr Ostaszewski and Tomasz Sadkowski* Abstract Background: Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. Methods: Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Results: Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs.
    [Show full text]
  • Cascade Profiling of the Ubiquitin-Proteasome System in Cancer Anastasiia Rulina
    Cascade profiling of the ubiquitin-proteasome system in cancer Anastasiia Rulina To cite this version: Anastasiia Rulina. Cascade profiling of the ubiquitin-proteasome system in cancer. Agricultural sciences. Université Grenoble Alpes, 2015. English. NNT : 2015GREAV028. tel-01321321 HAL Id: tel-01321321 https://tel.archives-ouvertes.fr/tel-01321321 Submitted on 25 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Biodiversite du Developpement Oncogenese Arrêté ministériel : 7 août 2006 Présentée par Anastasiia Rulina Thèse dirigée par Maxim Balakirev préparée au sein du Laboratoire BIOMICS dans l'École Doctorale Chimie et Sciences du Vivant Profilage en cascade du système ubiquitine- protéasome dans le cancer Thèse soutenue publiquement le «17/12/2015», devant le jury composé de : M. Damien ARNOULT Docteur CR1, CNRS, Rapporteur M. Matthias NEES Professor Adjunct, University of Turku, Rapporteur M. Philippe SOUBEYRAN Docteur, INSERM, Membre Mme. Jadwiga CHROBOCZEK Directeur de recherche DR1, CNRS, Membre M. Xavier GIDROL Directeur de laboratoire, CEA, Président du jury M. Maxim BALAKIREV Docteur, CEA, Membre, Directeur de Thèse 2 Я посвящаю эту научную работу моей маме, Рулиной Людмиле Михайловне, с любовью и благодарностью.
    [Show full text]
  • Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer’S Disease
    International Journal of Molecular Sciences Review Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer’s Disease Sudip Dhakal and Ian Macreadie * School of Science, RMIT University, Bundoora, Victoria 3083, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-9925-6627 Received: 29 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: Alzheimer’s Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model.
    [Show full text]
  • Regulation of Proteins by Ubiquitylation
    CHAPTER 7: Future Directions In Situ Hybridisation Screen for Developmentally Regulated Ubiquitin Modifying Enzymes The full potential of the ISH screen for developmentally regulated ubiquitin modifying enzymes described in Chapter 3 was not realised and the possibility remains that the expression of some ubiquitin pathway enzymes may be restricted during development due to participation in specific developmental events. Should this screen be revisited in the future, there are a number of ways in which it could be improved. The greatest improvements can be made in the identification of ubiquitin pathway enzymes, preselection of those targets that are most likely to be expressed at ISH detectable levels and standardising the procedure for probe selection and synthesis. In the past five years considerable successes have been made in sequencing complete genomes, including the mouse genome. Murine sequence data, which is being progressively annotated, is publicly available through institutions such as NCBI and ENSEMBL and may be queried using databases such as Entrez Gene and Unigene (Maglott et al., 2005; Wheeler et al., 2005). The vast increase in knowledge of the mouse genome is of obvious use in identifying ubiquitin pathway enzymes, particularly those that are identifiable by characteristic motifs such as the USP class of deubiquitylating enzymes. For the study described in Chapter 3, cDNA was acquired for 13 distinct USPs. Searching the Entrez Gene database reveals that these cDNAs represent little over one quarter of the 49 genes that are confirmed or predicted members of this enzyme class and have been systematically assigned numbers from USP1 to USP54. Although not all ubiquitin modifying enzymes can be identified by sequence motifs, gene annotation allows for identification of genes that have been functionally shown to participate in the ubiquitin pathway.
    [Show full text]
  • 1 Supporting Information for Real-Time Tracking of Complex
    Supporting Information for Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay Joanna Koszela*, Nhan T Pham, David Evans, Stefan Mann, Irene Perez-Pi, Steven Shave, Derek F J Ceccarelli, Frank Sicheri, Mike Tyers, Manfred Auer* Supporting Methods Inhibitors BAY 11-7082, clomipramine and heclin were purchased from Sigma Aldrich (cat. no B5556, C7291 and SML1396, respectively). PYR-41 was purchased from Calbiochem (cat. no 662105) and CC0651 was provided by the Tyers group. The masses and purity of compounds were confirmed by analytical HPLC and LC/MS. Proteins The following proteins were purchased from BostonBiochem: wild type ubiquitin (cat. no U- 100H); untagged human recombinant ubiquitin activating enzyme (UBE1) (cat. no E-304); N- terminally His6-tagged human recombinant ubiquitin activating enzyme (UBE1) (cat. no E- 305); human recombinant E6AP (UBE3A) with a C-terminal His6-tag (cat. no E3-230). Protein expression and purification His6-tagged Ube2L3 was expressed from pET28a-LIC (provided by the Sicheri group) in BL21(DE3) E. coli. 1 L cultures were grown at 37°C in LB and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 20°C overnight. Cells were harvested by centrifugation at 4,000 rpm, 4°C and lysed in lysis buffer (50 mM sodium phosphate buffer pH 8, 400 mM NaCl, 10 mM imidazole, 10 mM β-mercaptoethanol, protease inhibitor cocktail (Roche) with lysozyme (Sigma-Aldrich) and Benzonase Nuclease (Sigma-Aldrich, cat. no E8263)) and sonicated on ice for 1 min in 10 second pulses at 50% of maximum power 1 (Sonic VibraCell).
    [Show full text]