2003 Launch Forecast.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2003 Launch Forecast.Pdf 2003 Commercial Space Transportation Forecasts About the Associate Administrator for Commercial Space Transportation and the Commercial Space Transportation Advisory Committee The Federal Aviation Administration’s in 1985, COMSTAC is made up of senior Associate Administrator for Commercial executives from the U.S. commercial space Space Transportation (FAA/AST) licenses transportation and satellite industries, and regulates U.S. commercial space space-related state government officials, launch activity as authorized by Executive and other space professionals. Order 12465 (Commercial Expendable Launch Vehicle Activities) and 49 United The primary goals of COMSTAC are to: States Code Subtitle IX, Chapter 701 (for- merly the Commercial Space Launch Act). § Evaluate economic, technological and AST’s mission is to license and regulate institutional issues relating to the U.S. commercial launch operations to ensure commercial space transportation indus- public health and safety and the safety of try; property, and to protect national security and foreign policy interests of the United § Provide a forum for the discussion of States. The Commercial Space Launch Act issues involving the relationship between of 1984 and the 1996 National Space Policy also direct the Federal Aviation industry and government requirements; Administration to encourage, facilitate, and and promote commercial launches. § Make recommendations to the The Commercial Space Transportation Administrator on issues and approaches Advisory Committee (COMSTAC) pro- for Federal policies and programs vides information, advice, and recommen- regarding the industry. dations to the Administrator of the Federal Aviation Administration within the Additional information concerning AST Department of Transportation (DOT) on and COMSTAC can be found on AST’s matters relating to the U.S. commercial web site, http://ast.faa.gov. space transportation industry. Established Cover: Art by Phil Smith (2003) Federal Aviation Administration and the i Commercial Space Transportation Advisory Committee (COMSTAC) 2003 Commercial Space Transportation Forecasts ii Federal Aviation Administration and the Commercial Space Transportation Advisory Committee (COMSTAC) 2003 Commercial Space Transportation Forecasts Table of Contents Executive Summary . .1 Introduction . .3 Growth of Commercial Space Transportation . .3 About the COMSTAC 2003 Commercial Geosynchronous Launch Demand Model . .3 About the FAA NGSO Commercial Space Transportation Forecast . .3 Combined Satellite and Launch Forecasts . .3 COMSTAC 2003 Commercial Geosynchronous Orbit (GSO) Launch Demand Model . .7 Executive Summary . .7 Introduction . .9 Background . .10 Methodology . .10 COMSTAC Demand Projection vs. Actual Launches Realized . .12 Factors That Affect Launch Realization . .12 2002 Space Industry Performance on Launch Demand . .13 Projecting Actual Launches . .13 2003 Satellite Launch Demand Model . .14 Satellite Launch Mass Classes . .15 Commercial GSO Satellite Trends . .16 Industry Metrics . .16 Future Trends . .18 Comparison with Previous COMSTAC Demand Forecasts . .20 Launch Vehicle Demand . .21 Factors That May Affect Future Demand . .22 Summary . .24 Appendix A. Use of the COMSTAC GSO Launch Demand Model . .25 Demand Model Defined . .25 Appendix B. Supplemental Questionnaire . .26 Appendix C. Letter from the Associate Administrator . .28 Appendix D. Historical Launches . .31 2003 Commercial Space Transportation Forecast for Non-Geosynchronous Orbits . .35 Executive Summary . .35 Introduction . .36 NGSO Satellite Systems . .37 International Science and Other Payloads . .37 Digital Audio Radio Services . .38 Market Demand Scenarios . .38 Commercial Remote Sensing Satellites . .38 DigitalGlobe . .39 ImageSat International . .39 InfoTerra GmbH . .39 ORBIMAGE . .39 Radarsat International . .41 RapidEye AG . .41 Resource21 . .41 Space Imaging . .41 TransOrbital . .42 Market Demand Scenarios . .42 Federal Aviation Administration and the iii Commercial Space Transportation Advisory Committee (COMSTAC) 2003 Commercial Space Transportation Forecasts “Little LEO” Telecommunications Systems . .42 Recent Developments . .42 Competition . .43 “Big LEO” and Mobile Satellite Services . .43 Globalstar . .43 ICO . .44 Iridium . .45 “Broadband LEO” Systems . .45 Recent Developments . .46 Future Markets . .46 Risk Factors That Affect Demand . .46 Methodology . .48 Vehicle Sizes and Orbits . .49 Satellite and Launch Forecast . .50 Baseline Scenario . .50 Historical NGSO Market Assessments . .52 iv Federal Aviation Administration and the Commercial Space Transportation Advisory Committee (COMSTAC) 2003 Commercial Space Transportation Forecasts List of Figures Figure 1. GSO Satellite and Launch Demand . ..
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • Fiscal Year 1964 and 1965
    NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED EXECUTIVE OFFICE OF THE PRESIDENT NATIONAL AERONAUTICS AND SPACE COUlNClL WASHINGTON. D. C. 20M2 THE WHITE HOUSE WASH I NGTON January 27, 1965 TO THE CONGRESS OF THE UNITED STATES: I am proud to transmit -- as I know the Congress will be proud to receive -- this review of the significant successes of our Nation's aeronautics and space efforts in the calendar year of 1964. The advances of 1964 were gratifying and heartening omens of the gains and good to come from our determined national undertaking in exploring the frontiers of space. While this great enterprise is still young, we began during the year past to realize its potential in our life on earth. As this report notes, practical uses of the benefits of space technology were almost commonplace around the globe -- warning us of gathering storms, guiding our ships at sea, assisting our map-makers and serving, most valuably of all, to bring the peoples of many nations closer together in joint peaceful endeavors. Substantial strides have been made in a very brief span of time -- and more are to come. We expect to explore the moon, not just visit it or photograph it. We plan to explore and chart planets as well. We shall expand our earth laboratories into space laboratories and extend our national strength into the space dimension. The purpose of the American people -- expressed in the earliest days of the Space Age -- remains unchanged and unwavering.
    [Show full text]
  • NASA News 01 National Aeronautics and Space Administration Washington, D.C
    NASA News 01 National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 (0 3 For Release: o *[J£ Bill Pomeroy 00 c« Headquarters, Washington, D.C, 3 P. M., WEDNESDAY, Dfn (Phone: 202/755-8370) October 10, 1979 in ^ Ken Atchison 0 Headquarters, Washington, D.C, (Phone: 202/755-2497) a RELEASE NO: 79-126 a PEGASUS 2 REENTRY EXPECTED IN NOVEMBER w The Pegasus 2 spacecraft assembly, launched by NASA in 1965, is expected to reenter the Earth's atmosphere on or about Nov. 5, according to notification given NASA by the North American Air Defense Command. The command compiles information on satellite payloads, rocket bodies and other orbiting pieces that could survive the friction and heat of reentry and impact on Earth. Pegasus 2, launched May 25, 1965, was used to gather micrometeoroid data for use in the design of spacecraft. -more- -2- It was one of three such spacecraft, all launched in 1965. Pegasus 1 reentered Sept. 17, 1978, over Africa and Pegasus 3 reentered Aug. 4, 1969, over the Pacific Ocean. The Pegasus 2 assembly weighs about 10,430 kilograms (23,000 pounds) and is 21 meters (70 feet) long. The space- craft itself weighs about 1,450 kg (3,200 lb.). It is attached to the empty S-IV stage and the instrument unit of the Saturn I launch vehicle. None of the sections has any radioactive nuclear power sources or materials aboard. It is estimated that approximately 9,705 kg (21,400 lb.) of orbital hardware will be destroyed by reentry heating.
    [Show full text]
  • United States Space Program Firsts
    KSC Historical Report 18 KHR-18 Rev. December 2003 UNITED STATES SPACE PROGRAM FIRSTS Robotic & Human Mission Firsts Kennedy Space Center Library Archives Kennedy Space Center, Florida Foreword This summary of the United States space program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives. The list is divided into four sections. Robotic mission firsts, Human mission firsts, Space Shuttle mission firsts and Space Station mission firsts. Researched and prepared by: Barbara E. Green Kennedy Space Center Library Archives Kennedy Space Center, Florida 32899 phone: [321] 867-2407 i Contents Robotic Mission Firsts ……………………..........................……………...........……………1-4 Satellites, missiles and rockets 1950 - 1986 Early Human Spaceflight Firsts …………………………............................……........…..……5-8 Projects Mercury, Gemini, Apollo, Skylab and Apollo Soyuz Test Project 1961 - 1975 Space Shuttle Firsts …………………………….........................…………........……………..9-12 Space Transportation System 1977 - 2003 Space Station Firsts …………………………….........................…………........………………..13 International Space Station 1998-2___ Bibliography …………………………………..............................…………........…………….....…14 ii KHR-18 Rev. December 2003 DATE ROBOTIC EVENTS MISSION 07/24/1950 First missile launched at Cape Canaveral. Bumper V-2 08/20/1953 First Redstone missile was fired. Redstone 1 12/17/1957 First long range weapon launched. Atlas ICBM 01/31/1958 First satellite launched by U.S. Explorer 1 10/11/1958 First observations of Earth’s and interplanetary magnetic field. Pioneer 1 12/13/1958 First capsule containing living cargo, squirrel monkey, Gordo. Although not Bioflight 1 a NASA mission, data was utilized in Project Mercury planning. 12/18/1958 First communications satellite placed in space. Once in place, Brigadier Project Score General Goodpaster passed a message to President Eisenhower 02/17/1959 First fully instrumented Vanguard payload.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters. 1st Quarter 1996 United States Department of Transportation • Federal Aviation Administration Office of Associate Administrator for Commercial Space Transportation Quarterly Launch Report 1 1st QUARTER REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. The report highlights commercial launch activities, classifying commercial launches as one or more of the following: • internationally competed launch events (i.e. launch opportunities considered available in principle to competitors in the international launch services market), • any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. Code Title 49, Subsection 9, Section 701 (previously known as the Commercial Space Launch Act), and • certain European launches of Post, Telegraph and Telecommunications payloads on Ariane vehicles. Photo credit: Lockheed Martin Corporation (1995). Image is of the Atlas 2A launch on December 15, 1995. It successfully orbited a Galaxy 3R commercial communications satellite for Hughes Communications,
    [Show full text]
  • About the Associate Administrator for Commercial Space Transportation (Ast) and the Commercial Space Transportation Advisory Committee (Comstac)
    2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS Federal Aviation Administration’s Associate Administrator for Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) May 2000 ABOUT THE ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION (AST) AND THE COMMERCIAL SPACE TRANSPORTATION ADVISORY COMMITTEE (COMSTAC) The Federal Aviation Administration’s senior executives from the U.S. commercial Associate Administrator for Commercial Space space transportation and satellite industries, Transportation (AST) licenses and regulates U.S. space-related state government officials, and commercial space launch activity as authorized other space professionals. by Executive Order 12465, Commercial Expendable Launch Vehicle Activities, and the The primary goals of COMSTAC are to: Commercial Space Launch Act of 1984, as amended. AST’s mission is to license and • Evaluate economic, technological and regulate commercial launch operations to ensure institutional issues relating to the U.S. public health and safety and the safety of commercial space transportation industry property, and to protect national security and foreign policy interests of the United States • Provide a forum for the discussion of issues during commercial launch operations. The involving the relationship between industry Commercial Space Launch Act of 1984 and the and government requirements 1996 National Space Policy also direct the Federal Aviation Administration to encourage, • Make recommendations to the Administrator facilitate, and promote commercial launches. on issues and approaches for Federal policies and programs regarding the industry. The Commercial Space Transportation Advisory Committee (COMSTAC) provides Additional information concerning AST and information, advice, and recommendations to the COMSTAC can be found on AST’s web site, at Administrator of the Federal Aviation http://ast.faa.gov.
    [Show full text]
  • Sensors Vs Equivalent Sun Time
    b' NASA TECHNICAL NOTE b m 0 m m d z c 4 GPO PRICE $ v) 4 z CFSTl PRICE(S) $ -7.. Bd Hard copy (HC) Microfiche (MF) ,z< ff 653 July 85 N67 11387 (TnRSII / //6 - (CODE) (PAGES1 (NASA CR OR TMX OR AD NUMBER) I ' THE METEOROID SATELLITE PROJECT PEGASUS FIRST SUMMARY REPORT George C. Marshall Space Flight Center - Huntsville, Ala. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1966 NASA TN D-3505 THE METEOROID SATELLITE PROJECT PEGASUS FIRST SUMMARY REPORT George C. Marshall Space Flight Center Huntsville, Ala. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $3.00 I TABLE OF CONTENTS Page SUMMARY .................................... I INTRODUCTION .......................... ...... 1 I. STRUCTURAL DESIGN AND DATA SYSTEMS OF SPA4CECRAFT - William G. Johnson. .................. 4 */ II. THERMAL DESIGN CONSIDERATIONS - Gerhard B. Heller ... 18 V” III. METEOROID DETECTOR DEVELOPMENT AND TESTING - Mary J. Smith. ......................... 29 / IV. OPERATIONAL ASPECTS OF PROJECT PEGASUS - William G. Johnson .............................. 55 i/’ V. METEOROID DATA RECORDED ON PEGASUS FLIGHTS - /- JamesB. Dozier.. .............................. 65 VI. SECONDARY MEASUREMENTS BY PEGASUS - Gerhard B. Heller, Russell D. Shelton, and James B. Dozier.. 77 l/ CONCLUSIONS .................................io9 REFERENCES ..................................I10 iii LIST OF ILLUSTRATIONS Figure Title Page 1. Pegasus Spacecraft
    [Show full text]
  • John F. Kennedy Space Center, Operations and Checkout Building) First Street, Between Avenue D and Avenue E Cape Canaveral Brevard County Florida
    CAPE CANAVERAL AIR FORCE STATION, LAUNCH COMPLEX 39, HAER FL-8-11-E ALTITUDE CHAMBERS FL-8-11-E (John F. Kennedy Space Center, Operations and Checkout Building) First Street, between Avenue D and Avenue E Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, LAUNCH COMPLEX 39, ALTITUDE CHAMBERS, (John F. Kennedy Space Center, Operation & Checkout Building) HAERNo. FL-8-11-E Location: Within the Operations and Checkout Building High Bay First Street, between Avenue D and Avenue E Cape Canaveral Brevard County Florida U.S.G.S. 7.5. minute Cape Canaveral, Florida, quadrangle, Universal Transverse Mercator coordinates: 17.534600.3155100 Date of Installation: 1965 Designer/ Manufacturer: Stokes Equipment Division of the Pennsalt Chemical Corporation (now Pennwalt Corporation), Philadelphia, Pennsylvania Installer: Pittsburgh Des Moines Steel Corporation; Elsbery Corporation; Fischer Electric Corporation Present Owner: National Aeronautics and Space Administration (NASA) Kennedy Space Center, FL 32899-0001 Present Use: Test facility (Chamber R); inactive (Chamber L) Significance: The two Altitude Chambers sit within the High Bay of the Operations and Checkout (O&C) Building. The O&C Building is located in the Industrial Area of the John F. Kennedy Space Center (KSC). The O&C Building was listed in the National Register of Historic Places (NRHP) in 2000 in recognition of its exceptional importance at the national level in the context of the Apollo program, for which it was used to assemble and test the Apollo spacecraft before launching.
    [Show full text]
  • 2007 Commercial Space Transportation Forecasts
    Federal Aviation Administration 2007 Commercial Space Transportation Forecasts May 2007 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-013107.INDD 2007 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation and the Commercial Space Transportation Advisory Committee The Federal Aviation Administration’s industry. Established in 1985, COMSTAC is Office of Commercial Space Transportation made up of senior executives from the U.S. (FAA/AST) licenses and regulates U.S. com- commercial space transportation and satellite mercial space launch and reentry activity as industries, space-related state government authorized by Executive Order 12465 officials, and other space professionals. (Commercial Expendable Launch Vehicle Activities) and 49 United States Code Subtitle The primary goals of COMSTAC are to: IX, Chapter 701 (formerly the Commercial Space Launch Act). AST’s mission is to Evaluate economic, technological and license and regulate commercial launch and institutional issues relating to the U.S. reentry operations to protect public health and commercial space transportation safety, the safety of property, and the national industry; security and foreign policy interests of the United States. Chapter 701 and the 2004 U.S. Provide a forum for the discussion of Space Transportation Policy also direct the issues involving the relationship between Federal Aviation Administration to encourage, industry and government requirements; facilitate, and promote commercial launches and and reentries. Make recommendations to the The Commercial Space Transportation Administrator on issues and approaches Advisory Committee (COMSTAC) provides for Federal policies and programs regard- information, advice, and recommendations ing the industry. to the Administrator of the Federal Aviation Administration within the Department of Additional information concerning AST and Transportation (DOT) on matters relating to COMSTAC can be found on AST’s web site, the U.S.
    [Show full text]
  • Full Document C.Qxd
    2004 Commercial Space Transportation Forecasts About the Associate Administrator for Commercial Space Transportation and the Commercial Space Transportation Advisory Committee The Federal Aviation Administration’s in 1985, COMSTAC is made up of senior Associate Administrator for Commercial executives from the U.S. commercial space Space Transportation (FAA/AST) licenses transportation and satellite industries, and regulates U.S. commercial space space-related state government officials, launch activity as authorized by Executive and other space professionals. Order 12465 (Commercial Expendable Launch Vehicle Activities) and 49 United The primary goals of COMSTAC are to: States Code Subtitle IX, Chapter 701 (for- merly the Commercial Space Launch Act). Evaluate economic, technological and AST’s mission is to license and regulate institutional issues relating to the U.S. commercial launch operations to ensure commercial space transportation public health and safety and the safety of industry; property, and to protect national security and foreign policy interests of the United Provide a forum for the discussion of States. The Commercial Space Launch Act issues involving the relationship between of 1984 and the 1996 National Space Policy also direct the Federal Aviation industry and government requirements; Administration to encourage, facilitate, and and promote commercial launches. Make recommendations to the The Commercial Space Transportation Administrator on issues and approaches Advisory Committee (COMSTAC) pro- for Federal policies and programs vides information, advice, and recommen- regarding the industry. dations to the Administrator of the Federal Aviation Administration within the Additional information concerning AST Department of Transportation (DOT) on and COMSTAC can be found on AST’s matters relating to the U.S.
    [Show full text]
  • NASA Is Not Archiving All Potentially Valuable Data
    ‘“L, United States General Acchunting Office \ Report to the Chairman, Committee on Science, Space and Technology, House of Representatives November 1990 SPACE OPERATIONS NASA Is Not Archiving All Potentially Valuable Data GAO/IMTEC-91-3 Information Management and Technology Division B-240427 November 2,199O The Honorable Robert A. Roe Chairman, Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: On March 2, 1990, we reported on how well the National Aeronautics and Space Administration (NASA) managed, stored, and archived space science data from past missions. This present report, as agreed with your office, discusses other data management issues, including (1) whether NASA is archiving its most valuable data, and (2) the extent to which a mechanism exists for obtaining input from the scientific community on what types of space science data should be archived. As arranged with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 30 days from the date of this letter. We will then give copies to appropriate congressional committees, the Administrator of NASA, and other interested parties upon request. This work was performed under the direction of Samuel W. Howlin, Director for Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix IX. Sincerely yours, Ralph V. Carlone Assistant Comptroller General Executive Summary The National Aeronautics and Space Administration (NASA) is respon- Purpose sible for space exploration and for managing, archiving, and dissemi- nating space science data. Since 1958, NASA has spent billions on its space science programs and successfully launched over 260 scientific missions.
    [Show full text]