UCGE Reports Augmentation of GPS with a Barometer and a Heading
Total Page:16
File Type:pdf, Size:1020Kb
UCGE Reports Number 20098 Department of Geomatics Engineering Augmentation of GPS with a Barometer and a Heading Rate Gyroscope for Urban Vehicular Navigation (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) by Nobuyuki Hayashi December 1996 THE UNIVERSITY OF CALGARY Augmentation of GPS with a Barometer and a Heading Rate Gyroscope for Urban Vehicular Navigation by Nobuyuki Hayashi A THESIS SUBMITTE FACULTE TH O GRADUATDT F Y O E STUDIES DEPARTMEN GEOMATICF TO S ENGINEERING ©Nobuyuki Hayashi 1996 PREFACE unalteren Thia s i s d versioe author'th f o n s Maste f Scienco r Engineerinn i e g Thesis of the same title. This thesis was accepted by the Faculty of Graduate Studies in December 1996. e facultTh y superviso r thi . Gerarfo rs Dr wor s dkwa Lachapell e otheth d r an e member examinine th f so g committe . Collins . J . Cannon . E M . eM . M werDr , . Dr , eDr Fattouche and Dr. G. Rogers. ABSTRACT integratew ne A d DGP S/ sensor s land navigation syste s mintroducei d an d examined t incorporateI . s barometric heigh gyrd an to heading s verticawhica t d hac an l horizontal vehicle trajectory constraints to enhance position accuracy and availability in urba d forestean n d environments where satellite signal e frequentlar s y blockey b d obstructions e concepTh . f sensoo t r constrain S navigatioGP t s briefli n y discussed. Decentralized two-state Kalman filter implementeare s to obtaid n smooth sensor informatio estimato t d nan e corrections. Error model r sensosfo r inpu developee ar t o dt evaluat e effec eth f correspondin o t g constraints. Augmented least square Kalmad an s n position estimator e chosear s r constrainenfo d position determination. Field tests were carried out and height and heading constraint DGPS solutions are compared with unaided DGPS and barometric height aided DGPS solutions. For the cases tested, it improves the positioning availability by 24 to 35% while mostly maintaining the positioning accuracy within 10 metres DRMS. Conclusion presentee sar advantaged dan disadvantaged san f so this concept are discussed. in ACKNOWLEDGEMENTS I would like to thank my supervisor, Dr. Gerard Lachapelle, for his unlimited support and encouragement. He gave me a tremendous opportunity to pursue the project, showe a dremarkabl e patienc believed ability an em o completn t yi d e taske th e Th . financial assistance gratefullarranges i e m r dyfo acknowledged. Richard y besKlukam t s f becomo friendha s e r s lifethorougfo on eHi s . h knowledg Godf e o Rockies e th , , Englis researcd han h topic trule sar y appreciated havI . e been encourage sincers hi y db e attitude towards liflife y Canadn ei M . a woulr lesfa s e db meaningful without him. colleaguey m I f thano l Geomaticn kal i s s Engineerin r sharingfo ggreaa t time during my program. I will carry this memory for a long time. John Brown, Jamie Henriksen, Sun Huangqui, Chris Varner, Shawn Weisenburger, Kirk Collins and Brad Groat are especially acknowledged for their help. My family members, Yoshinori, Keiko, Yukiko Hayashi and Hide Yoshimura are thanked for their continuous support from Japan. I would like to acknowledge Nahoko Iguchi for her dedication and generous support. She is also a talented research assistant helpeo witwh e dm h testing. IV DEDICATION dedicateI this parents,thesismy to Yoshinori andKeiko and whatever brought me here. TABLE OF CONTENTS APPROVAL PAGE.........................................................................................................ii ABSTRACT...................................................................................................................in ACKNOWLEDGEMENTS............................................................................................^ DEDICATION...............................................................................................................^ TABL CONTENTF EO S ..............................................................................................i .v LIST OF TABLES ......................................................................................................... ix LIST OF FIGURES............................................................................................. NOTATION................................................................................................................. xix CHAPTER ONE: INTRODUCTION.............................................................................1 1.1 Statement of Problem............................................................................... 2 1.2 Literature Review.....................................................................................4 1.3 System Requirements................................................................................7 1.4 Objectives............................................................................................... 10 CHAPTER TWO: SYSTEM DESIGN.......................................................................... 14 1 2. System Structure...................................................................................4 1 . 2.2 Hardware Components........................................................................... 16 3 2. System Software....................................................................................8 1 . CHAPTER THREE: SENSOR DATA ACQUISITION PROCEDURE......................... 22 3.1 Overvie f Sensowo r Technology.............................................................23 3.2 Description of Selected Sensors.............................................................. 36 3.2.1 Barometric Pressure Transducer.................................................. 36 3.2.2 Fiber Optic Gyro.........................................................................40 3 3. Sensor Error Models ..............................................................................48 3.3.1 Barometric Height Error Model ..................................................48 3.3.2 Gyro Heading Rate Error Model................................................0 .5 3.3.3 Sensor Heading Error Model....................................................... 52 VI 3.3.4 Cross-Track Position Error Model.............................................2 .5 CHAPTER FOUR: SENSOR CONSTRAINT POSITIONING THEORY....................4 .5 4.1 Concept of Sensor Constraint Positioning............................................... 54 4.2 Mathematical Models..............................................................................54 3 4. Augmented Least Squares Estimator......................................................6 .5 CHAPTER FIVE: KALMAN FILTERS........................................................................ 64 5.1 KalmanFilter Algorithm.........................................................................64 5.2 Sensor Filters.......................................................................................... 67 3 5. Kalman Position Estimator with Sensor Constraint .................................75 CHAPTER SIX: SOFTWARE AND IMPLEMENTATION CONSIDERATIONS ....... 81 1 6. Overview...............................................................................................1 .8 6.2 Sensor Constraint Positioning Module.................................................... 83 6.3 Miscellaneous Considerations.................................................................88 6.3.1 Position Estimator Breakdown Problem...................................... 88 6.3.2 Operational Considerations ........................................................8 .8 6.3.3 Real-Time Implementation.........................................................9 .8 6.3.4 Optimal Estimator Configuration................................................9 8 . CHAPTER SEVEN: SYSTEM TESTING AND RESULTS......................................... 92 7.1 Urban Environment Simulation............................................................... 93 7.1.1 Route Description and Reference Trajectory ...............................93 7.1.2 Virtual Wall Concept.................................................................7 .9 7.1.3 Simulation Results..................................................................... 100 7.1.3.1 Cross-Track Cutoff Angle of 30 Degrees....................... 103 7.1.3.2 Cross-Track Cutoff Angle of 45 Degrees....................... 118 7.1.3.3 Cross-Track Cutoff AnglDegrees......................0 6 f eo 3 13 . 7.2 Downtown Calgary Field Test.............................................................. 149 7.2.1 Objective Strategied san s .........................................................9 14 . 7.2.2 Route Description..................................................................... 150 vii 7.2.3 Test Results.............................................................................. 152 7.2.3.1 Unaide Results....................................................S dGP 2 15 . 7.2.3.2 Sensor Constrain Results.....................................S GP t 4 15 . CHAPTER EIGHT: CONCLUSIONS AND RECOMMENDATIONS ....................... 161 8.1 Conclusions.......................................................................................... 161 2 8. Recommendations...............................................................................3 16 . REFERENCES...........................................................................................................6 16 . vin LIS TABLEF TO S 1.1 Single Point GPS Error Budgets........................................................................... 9 3.1 Relative Merits of Gyros