Turbulent Times in Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY -
Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte. -
Halloweierstrass
Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out. -
List of Members
LIST OF MEMBERS, ALFRED BAKER, M.A., Professor of Mathematics, University of Toronto, Toronto, Canada. ARTHUR LATHAM BAKER, C.E., Ph.D., Professor of Mathe matics, Stevens School, Hpboken., N. J. MARCUS BAKER, U. S. Geological Survey, Washington, D.C. JAMES MARCUS BANDY, B.A., M.A., Professor of Mathe matics and Engineering, Trinit)^ College, N. C. EDGAR WALES BASS, Professor of Mathematics, U. S. Mili tary Academy, West Point, N. Y. WOOSTER WOODRUFF BEMAN, B.A., M.A., Member of the London Mathematical Society, Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. R. DANIEL BOHANNAN, B.Sc, CE., E.M., Professor of Mathematics and Astronomy, Ohio State University, Columbus, Ohio. CHARLES AUGUSTUS BORST, M.A., Assistant in Astronomy, Johns Hopkins University, Baltimore, Md. EDWARD ALBERT BOWSER, CE., LL.D., Professor of Mathe matics, Rutgers College, New Brunswick, N. J. JOHN MILTON BROOKS, B.A., Instructor in Mathematics, College of New Jersey, Princeton, N. J. ABRAM ROGERS BULLIS, B.SC, B.C.E., Macedon, Wayne Co., N. Y. WILLIAM ELWOOD BYERLY, Ph.D., Professor of Mathematics, Harvard University, Cambridge*, Mass. WILLIAM CAIN, C.E., Professor of Mathematics and Eng ineering, University of North Carolina, Chapel Hill, N. C. CHARLES HENRY CHANDLER, M.A., Professor of Mathe matics, Ripon College, Ripon, Wis. ALEXANDER SMYTH CHRISTIE, LL.M., Chief of Tidal Division, U. S. Coast and Geodetic Survey, Washington, D. C. JOHN EMORY CLARK, M.A., Professor of Mathematics, Yale University, New Haven, Conn. FRANK NELSON COLE, Ph.D., Assistant Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Robert De Montessus De Ballore's 1902 Theorem on Algebraic
Robert de Montessus de Ballore’s 1902 theorem on algebraic continued fractions : genesis and circulation Hervé Le Ferrand ∗ October 31, 2018 Abstract Robert de Montessus de Ballore proved in 1902 his famous theorem on the convergence of Padé approximants of meromorphic functions. In this paper, we will first describe the genesis of the theorem, then investigate its circulation. A number of letters addressed to Robert de Montessus by different mathematicians will be quoted to help determining the scientific context and the steps that led to the result. In particular, excerpts of the correspondence with Henri Padé in the years 1901-1902 played a leading role. The large number of authors who mentioned the theorem soon after its derivation, for instance Nörlund and Perron among others, indicates a fast circulation due to factors that will be thoroughly explained. Key words Robert de Montessus, circulation of a theorem, algebraic continued fractions, Padé’s approximants. MSC : 01A55 ; 01A60 1 Introduction This paper aims to study the genesis and circulation of the theorem on convergence of algebraic continued fractions proven by the French mathematician Robert de Montessus de Ballore (1870-1937) in 1902. The main issue is the following : which factors played a role in the elaboration then the use of this new result ? Inspired by the study of Sturm’s theorem by Hourya Sinaceur [52], the scientific context of Robert de Montessus’ research will be described. Additionally, the correlation with the other topics on which he worked will be highlighted, -
The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series. -
BSHM Christmas Meeting 2020 Titles & Abstracts June Barrow-Green
BSHM Christmas Meeting 2020 Titles & Abstracts June Barrow-Green (Open University): “I found out myself by the triangles”: The mathematical progress of Robert Leslie Ellis (1817-1859) as told by himself. Abstract Robert Leslie Ellis was one of the most intriguing and wide-ranging intellectual figures of early Victorian Britain, his contributions ranging from advanced mathematical analysis to profound commentaries on philosophy and classics. From the age of nine he kept a journal in which, amongst other things, he recorded his mathematical progress. In this talk, I shall use Ellis’s journal to tell the story of his unconventional journey from home-tutored student in Bath in 1827 to Senior Wrangler in the Cambridge Mathematical Tripos of 1840. Philip Beeley (University of Oxford): Whither the history of mathematics? Historical reflections on a historical discipline Abstract Beginning with the Oberwolfach meetings in the 1970s, the talk will consider some of the profound perspectival changes in the history of mathematics that have taken place over the last half century. Initially, these changes focused on giving greater weight to social history alongside what came to be known as the internalist approach, but increasingly scholars have come to see mathematics as deeply woven into the fabric of human culture and its history thus as complementary to other historical disciplines. The talk will provide an overview of this remarkable development and seek to assess its success. Raymond Flood (Kellogg College, Oxford): John Fauvel: life, labours and legacy This talk is dedicated to the memory of my dear friend and colleague John Fauvel (1947- 2001) whose enthusiasm and support for the BSHM knew no bounds. -
Salvatore Pincherle: the Pioneer of the Mellin–Barnes Integrals
Journal of Computational and Applied Mathematics 153 (2003) 331–342 www.elsevier.com/locate/cam Salvatore Pincherle: the pioneer of the Mellin–Barnes integrals Francesco Mainardia;∗, Gianni Pagninib aDipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy bIstituto per le Scienze dell’Atmosfera e del Clima del CNR, Via Gobetti 101, I-40129 Bologna, Italy Received 18 October 2001 Abstract The 1888 paper by Salvatore Pincherle (Professor of Mathematics at the University of Bologna) on general- ized hypergeometric functions is revisited. We point out the pioneering contribution of the Italian mathemati- cian towards the Mellin–Barnes integrals based on the duality principle between linear di5erential equations and linear di5erence equation with rational coe7cients. By extending the original arguments used by Pincherle, we also show how to formally derive the linear di5erential equation and the Mellin–Barnes integral representation of the Meijer G functions. c 2002 Elsevier Science B.V. All rights reserved. MSC: 33E30; 33C20; 33C60; 34-XX; 39-XX; 01-99 Keywords: Generalized hypergeometric functions; Linear di5erential equations; Linear di5erence equations; Mellin–Barnes integrals; Meijer G-functions 1. Preface In Vol. 1, p. 49 of Higher Transcendental Functions of the Bateman Project [5] we read “Of all integrals which contain gamma functions in their integrands the most important ones are the so-called Mellin–Barnes integrals. Such integrals were ÿrst introduced by Pincherle, in 1888 [21]; their theory has been developed in 1910 by Mellin (where there are references to earlier work) [17] and they were used for a complete integration of the hypergeometric di5erential equation by Barnes [2]”. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
The Mathematical Heritage of Henri Poincaré
http://dx.doi.org/10.1090/pspum/039.1 THE MATHEMATICAL HERITAGE of HENRI POINCARE PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 39, Part 1 THE MATHEMATICAL HERITAGE Of HENRI POINCARE AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 39 PROCEEDINGS OF THE SYMPOSIUM ON THE MATHEMATICAL HERITAGE OF HENRI POINCARfe HELD AT INDIANA UNIVERSITY BLOOMINGTON, INDIANA APRIL 7-10, 1980 EDITED BY FELIX E. BROWDER Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-22916 1980 Mathematics Subject Classification. Primary 01-XX, 14-XX, 22-XX, 30-XX, 32-XX, 34-XX, 35-XX, 47-XX, 53-XX, 55-XX, 57-XX, 58-XX, 70-XX, 76-XX, 83-XX. Library of Congress Cataloging in Publication Data Main entry under title: The Mathematical Heritage of Henri Poincare\ (Proceedings of symposia in pure mathematics; v. 39, pt. 1— ) Bibliography: p. 1. Mathematics—Congresses. 2. Poincare', Henri, 1854—1912— Congresses. I. Browder, Felix E. II. Series: Proceedings of symposia in pure mathematics; v. 39, pt. 1, etc. QA1.M4266 1983 510 83-2774 ISBN 0-8218-1442-7 (set) ISBN 0-8218-1449-4 (part 2) ISBN 0-8218-1448-6 (part 1) ISSN 0082-0717 COPYING AND REPRINTING. Individual readers of this publication, and nonprofit librar• ies acting for them are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in re• views provided the customary acknowledgement of the source is given. -
Science and Fascism
Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King.