1999, a Cluster of Microvillous Inclusion Disease in the Navajo

Total Page:16

File Type:pdf, Size:1020Kb

1999, a Cluster of Microvillous Inclusion Disease in the Navajo A cluster of microvillous inclusion disease in the Navajo population John F. Pohl, MD, Mitchell D. Shub, MD, Eric E. Trevelline, MD, Kristy Ingebo, MD, Gary Silber, MD, ANancy Rayhorn, RN, BSN, Steve Holve, MD, and Diana Hu, MD riod.1 The prognosis is generally poor, We report 4 unrelated patients with characteristic microscopic findings of with most patients dying by the second microvillous inclusion disease (MID) with early-onset phenotype. All 4 pa- decade of life as a result of complica- tients came from the Navajo reservation in northern Arizona. A literature tions of parenteral alimentation includ- 4 search revealed a fifth unrelated Navajo child with MID. The unusually ing liver failure or sepsis. Various high incidence in this population indicates that a founder effect might be re- treatments including glucocorticoids, sponsible for an increased frequency of this rare genetic disorder in the pentagastrin, human epidermal growth factor, disodium cromoglycate, adreno- Navajo. It is recommended that all Navajo infants presenting with severe corticotropic hormone, prednisolone, diarrhea during early infancy undergo investigation for MID. (J Pediatr and elemental formula feedings have 1999;134:103-6) failed.5-7 However, somatostatin, which is not universally successful,8 reduced stool output in 2 patients,9,10 with an increased weight velocity Microvillous inclusion disease, a rare children with a specific subset of in- noted in 1.10 Loperamide has only disorder with an unknown cause, re- tractable diarrhea and described com- transiently decreased stool output.1 sults in an intractable secretory diar- plete villous atrophy, crypt hypoplasia, Three patients have received intestinal rhea that begins in early infancy. MID absence of a brush border, and an in- or multivisceral transplantation.11-13 is characterized by histologic abnor- crease in the number of inclusions malities such as total villous atrophy, within the enterocytes that appeared MID Microvillous inclusion disease shortened microvilli, membrane- similar to lysosomal structures. Elec- bound inclusions, and increased num- tron microscopy has revealed a de- bers of secretory granules within en- crease in surface epithelial cell height Several reported cases of MID have terocytes.1 and characteristic membrane-bound occurred in members of the same family Avery et al2 first described infants inclusions containing microvilli found and also in children who were the result with intractable diarrhea in 1968 and in the apical aspect of the villous en- of a consanguineous marriage.3,14-16 In attempted to differentiate potential terocytes with normal appearance of this report a cluster of MID is described causes. In 1978 Davidson et al3 looked the crypt cells and basal enterocytes.4,5 involving 4 unrelated children from the at duodenal biopsy specimens of 5 The term “microvillous inclusion dis- Navajo nation in whom MID was diag- ease” was first used in 1989 to describe nosed within the past 8 years. A previ- From the Department of Pediatric Gastroenterology 9 children with such inclusions who ous report by others describes a fifth and Nutrition, Phoenix Children’s Hospital, Phoenix, had an autosomal recessive inheritance child with MID from the Navajo nation Arizona, and the Indian Health Service, Tuba City In- pattern.6 Polyhydramnios has typically who was unrelated to the children de- dian Medical Center, Tuba City, Arizona. not been noted before birth in patients scribed herein.13 Submitted for publication Apr 17, 1998; revi- sion Sept 21, 1998; accepted Sept 30, 1998. with MID, and until now there seems to be no racial predilection. There Reprint requests: Mitchell Shub, MD, Di- ASE EPORTS vision of Pediatric Gastroenterology and tends to be a female predominance. C R Nutrition, Phoenix Children’s Hospital, Symptoms usually develop in the first 909 East Brill St, Phoenix, AZ 85006. few days of life; however, late-onset Four unrelated Navajo children Copyright © 1999 by Mosby, Inc. MID has been described with symp- were given the diagnosis of MID at 0022-3476/99/$8.00 + 0 9/22/94846 toms developing after the neonatal pe- Phoenix Children’s Hospital. The pre- 103 POHL ET AL THE JOURNAL OF PEDIATRICS JANUARY 1999 DISCUSSION ing of 5 unrelated Navajo children with MID suggests an unexpectedly MID is a well-defined entity charac- high incidence in this population. The terized by intestinal villous atrophy, current Navajo population in the Unit- cellular disarray, absence of crypt hy- ed States is 225,000,20 and the average perplasia, and ultrastructural abnor- number of enrolled Navajo births has malities of enterocytes including in- been approximately 6000 per year over creased secretory granules, vacuolation the past decade.21 These 5 cases would in the apical cytoplasm, and microvilli suggest an incidence of MID in the that are isolated in intracytoplasmic in- Navajo as high as 1 per 12,000 live clusions.4,13,14 The cause of the intracy- births. toplasmic inclusions is unknown. Acid The high incidence of this disorder phosphatase, a lysosomal marker asso- in the Navajo may be the result of a ciated with degradation products, has “founder effect” in which a gene that not been associated with these inclu- is rare in the general population oc- sions.6 Decreased levels of myosin in curs in a small, isolated, and rapidly Figure. Representative transmission electron the brush border cytoskeleton have expanding population and leads to in- micrograph of small bowel from patient no. 1 showing characteristic microvillous inclusion in been found in MID, which suggests creased gene frequency and increased apical aspect of enterocyte (arrow). that myosin is unable to bind to the frequency of disease.22 Such founder base of microvilli; this might result in effects have been described in a num- defective assembly of microvilli and ber of populations that have remained natal course had been uneventful in all formation of inclusions.6,13,14,17 Al- isolated by geography, ethnicity, or cases. There was no family history of though MID usually affects the small religious preference.23-29 Navajo his- intractable diarrhea or consanguinity. intestine, previous reports have noted tory supports this hypothesis. In the All patients presented within the first similar findings in the gastric antrum, 1860s, during a period of warfare few days of life with high-output diar- gallbladder, renal tubular cells, colon, with the United States Army and sub- rhea (Table I), severe metabolic acido- and rectum.13,18 Abnormally low disac- sequent imprisonment, the Navajo sis, and dehydration. Infectious, en- charidase levels have been described in population underwent a reduction of docrine, and metabolic diseases were previous patients,5 as has an abnormal nearly 30%.30-31 After the Navajo Na- excluded, and intestinal biopsy speci- accumulation of periodic acid-Schiff tion was created in 1868 on their tra- mens were obtained. In all cases light staining in the apical cytoplasm be- ditional lands in the Southwestern microscopy of the duodenum revealed cause of the disrupted brush border.4 United States,32 the Navajo have villous atrophy with vacuolation of the Although it is possible that repeated thrived with a growth rate as high as surface enterocytes; periodic acid- hospitalizations and chronic illness 4% per year,33 making them the Schiff staining was increased in the may account for the delayed develop- largest Native American population in apical cytoplasm of the enterocytes. In ment noted in these patients (Table II), the United States.34 The remote loca- 2 of the patients disaccharidase analy- the cause is unknown and will require tion of the Navajo nation has caused sis revealed severe generalized disac- further study to determine whether it the population to remain geographi- charidase deficiency. Electron mi- is a previously unrecognized manifes- cally and genetically isolated. This croscopy revealed an increased tation of MID. scenario of a population “bottleneck” number of secretory granules in the The exact mode of inheritance of followed by genetic isolation and apical cytoplasm of the enterocytes, MID in the Navajo is unknown, but rapid growth are ideal conditions vacuolation of the surface enterocytes the presence of unaffected parents and under which a founder effect might with apical inclusions containing mi- disease in both males and females develop. This hypothesis is also sup- crovilli, and an absence of the brush strongly suggests an autosomal reces- ported by the finding of a number of border consistent with the diagnosis of sive inheritance. A previous study of other rare autosomal recessive illness- MID (Fig). Biopsy specimens of the children from the United Kingdom es found among the Navajo nation in- esophagus, stomach, and colon were with protracted diarrhea in infancy of cluding Navajo neuropathy, severe normal. One patient (no. 2) was treat- an unknown cause has shown an auto- combined immunodeficiency syn- ed with somatostatin and did not show somal recessive pattern and an inci- drome, and metachromatic leukodys- a favorable response to therapy. The dence of 1 in 200,000. However, these trophy.35-37 clinical course and outcome are shown patients had normal findings on jejunal Presuming that MID in the Navajo in Table II. biopsy by light microscopy.19 The find- is the result of a founder effect, then it 104 THE JOURNAL OF PEDIATRICS POHL ET AL VOLUME 134, NUMBER 1 Table I. Summary of characteristics of 5 Navajo patients with microvillous inclusion disease Stool Stool electrolytes output Birth Gestational Age at (mEq/L) (mL/kg/day) Patient weight age onset of No. Sex (kg) (wk) diarrhea (d) Na K Cl Fed Fasting 1 Male 3.5 39 6 110 7 85 175 95 2 Male 2.6 38 6 81 2 44 250 135-165 3 Male 3.3 36 6 115 5 96 150-175 125-175 4 Female 3.16 39 4 107 18 84 200-250 150-200 5 Female 2.7 37 4 6 27 150-250 100 Table II.
Recommended publications
  • A Comparative Study of the Ultrastructure of Microvilli in the Epithelium of Small and Large Intestine of Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central A COMPARATIVE STUDY OF THE ULTRASTRUCTURE OF MICROVILLI IN THE EPITHELIUM OF SMALL AND LARGE INTESTINE OF MICE T. M. MUKHERJEE and A. WYNN WILLIAMS From the Electron Microscope Laboratory, the Departlnent of Pathology, the University of Otago Medical School, Dunedin, New Zealand ABSTRACT A comparative analysis of the fine structure of the microvilli on jejunal and colonic epi- thelial cells of the mouse intestine has been made. The microvilli in these two locations demonstrate a remarkably similar fine structure with respect to the thickness of the plasma membrane, the extent of the filament-free zone, and the characteristics of the microfila- ments situated within the microvillous core. Some of the core microfilaments appear to continue across the plasma membrane limiting the tip of the microvillus. The main differ- ence between the microvilli of small intestine and colon is in the extent and organization of the surface coat. In the small intestine, in addition to the commonly observed thin surface "fuzz," occasional areas of the jejunal villus show a more conspicuous surface coat covering the tips of the microvilli. Evidence has been put forward which indicates that the surface coat is an integral part of the epithelial cells. In contrast to the jejunal epithelium, the colonic epithelium is endowed with a thicker surface coat. Variations in the organization of the surface coat at different levels of the colonic crypts have also been noted. The func- tional significance of these variations in the surface coat is discussed.
    [Show full text]
  • Antenatal Diagnosis of Microvillus Inclusion Disease
    Obstetrics & Gynecology International Journal Case Report Open Access Antenatal diagnosis of microvillus inclusion disease Abstract Volume 12 Issue 4 - 2021 Microvillus inclusion disease is a rare autosomal recessive disorder due to defective apical Gular Israfilova, Banu Arslanca, Yavuz Emre surface of the enterocytes presenting with severe watery diarrhea starting at birth. We describe a female infant who had antenatal diagnosis of microvillus inclusion disease. At Sukur, Acar Koç Department of Obstetrics and Gynecology, Ankara University 36th gestational week of a 32-year-old woman ultrasound examination revealed dilatation of School of Medicine, Turkey fetal sigmoid colon. The amniotic fluid level was normal. An amniocentesis was performed to rule out congenital sodium and chloride diarrhea in the prenatal period. The patient didn’t Correspondence: Gular Israfilova, MD, Ankara University prefer to undergo genetic tests. In conclusion, prenatal ultrasonographic identification of School of Medicine, Department of Obstetrics and Gynecology, dilated bowel loops without polyhydramnios suggests differential diagnosis of microvillus Dikimevi, Ankara, Turkey, Tel 0090 5375752340, inclusion disease in addition to congenital chloride diarrhea, jejunoileal atresia, volvulus, Email meconium ileus, Hirschsprung disease, enteric duplications, anorectal atresia. Received: July 29, 2021 | Published: August 12, 2021 Keywords: congenital diarrhea, microvillus inclusion disease, prenatal diagnosis Introduction respectively. On postpartum 3rd day, the neonate suffered from watery diarrhea and abdominal distension. Abdominal X-ray showed dilated Microvillus inclusion disease (MVID) is a congenital bowel intestinal loops and pneumoperitoneum (Figure 2). On postpartum 5th disease characterized by severe diarrhea, malabsorption and day, the infant was referred to the gastroenterology department due to 1 growth retardation in infancy. Severe watery diarrhea begins in the 19% weight loss.
    [Show full text]
  • The Small and Large Intestines∗
    OpenStax-CNX module: m46512 1 The Small and Large Intestines∗ OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0y Abstract By the end of this section, you will be able to: • Compare and contrast the location and gross anatomy of the small and large intestines • Identify three main adaptations of the small intestine wall that increase its absorptive capacity • Describe the mechanical and chemical digestion of chyme upon its release into the small intestine • List three features unique to the wall of the large intestine and identify their contributions to its function • Identify the benecial roles of the bacterial ora in digestive system functioning • Trace the pathway of food waste from its point of entry into the large intestine through its exit from the body as feces The word intestine is derived from a Latin root meaning internal, and indeed, the two organs together nearly ll the interior of the abdominal cavity. In addition, called the small and large bowel, or colloquially the guts, they constitute the greatest mass and length of the alimentary canal and, with the exception of ingestion, perform all digestive system functions. 1 The Small Intestine Chyme released from the stomach enters the small intestine, which is the primary digestive organ in the body. Not only is this where most digestion occurs, it is also where practically all absorption occurs. The longest part of the alimentary canal, the small intestine is about 3.05 meters (10 feet) long in a living person (but about twice as long in a cadaver due to the loss of muscle tone).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Neonatal Enteropathies: Defining the Causes of Protracted Diarrhea of Infancy
    Journal of Pediatric Gastroenterology and Nutrition 38:16–26 © January 2004 Lippincott Williams & Wilkins, Inc., Philadelphia Invited Review Neonatal Enteropathies: Defining the Causes of Protracted Diarrhea of Infancy Philip M. Sherman, David J. Mitchell, and Ernest Cutz Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada ABSTRACT chitect with intact villus-crypt axis. Neonatal enteropathies, The underlying causes of chronic diarrhea beginning early in by contrast, are characterized by blunting of the villi. These life are increasingly well defined. Infectious and post-infectious include microvillus inclusion disease, tufting enteropathy, enteropathies and food sensitive/allergic enteropathy account autoimmune enteropathy and IPEX syndrome - and it is for the majority of cases. Recent attention has focused on char- these conditions that are the subject of the current review. acterizing defined entities, which cause protracted diarrhea in JPGN 38:16–26, 2004. Keywords: Diarrhea—Infants— infants and young children. Disorders of intestinal ion transport Microvilli—Tufting—IPEX—Autoimmune—Epitheli- usually present at birth following a pregnancy complicated by um. © 2003 Lippincott Williams & Wilkins, Inc. polyhydramnios. Intestinal mucosal biopsies show normal ar- INTRODUCTION Causes of protracted diarrhea beginning early in life can be divided into those entities having a normal villus- Chronic and prolonged diarrhea is a symptom com- crypt axis and those associated with villus atrophy (Table plex with a variety of underlying etiologies. A recent 1). Congenital defects in the transport of sodium, chlo- medical position statement, which was published by the ride, glucose/galactose and bile acids, and congenital en- American Gastroenterological Association (1), provides terokinase deficiency each can cause prolonged diarrhea a comprehensive review of the subject in adults.
    [Show full text]
  • Goblet Cell Membrane Differentiations in the Midgut of a Lepidopteran Larva
    Jf. Cell Set. ao, 357-375 (1976) 357 Printed in Great Britain GOBLET CELL MEMBRANE DIFFERENTIATIONS IN THE MIDGUT OF A LEPIDOPTERAN LARVA N. E. FLOWER Physics and Engineering Laboratory, D.S.I.R., Private Bag, Lower Hutt, New Zealand AND B. K. FILSHIE Division of Entomology, C.S.I.R.O., P.O. Box 1700, Canberra, Australia SUMMARY So-called goblet cells are present in the midgut of lepidopteran larvae. They are thought to be involved in the active transport of potassium out of the haemolymph and into the gut lumen. A number of plasma membrane differentiations within the goblet cell cavity has been investi- gated using conventional staining, lanthanum tracer and freeze-etch techniques. Of particular interest are junction-like inter- and intra-membrane differentiations found on the villus-like cytoplasmic projections present at the apical tip of the goblet cell cavities. These cytoplasmic projections appear to act as a valve; in some cases they seem to close off the top of the goblet cell cavity, so isolating it from the gut lumen, while in other cases they are spread apart leaving a wide channel from the cavity into the lumen. The junction-like structures on these cytoplasmic projections are different in structure from the septate-type junctions which seal the midgut cells together at their apical borders, and the 2 types are present on the same plasma membrane, often within one micron of each other. The need for a different type of junction may possibly be related to the fact that it occurs between 2 areas of the same plasma membrane.
    [Show full text]
  • Human Intestinal M Cells Exhibit Enterocyte-Like Intermediate Filaments
    54 Gut 1998;42:54–62 Human intestinal M cells exhibit enterocyte-like intermediate filaments Gut: first published as 10.1136/gut.42.1.54 on 1 January 1998. Downloaded from T Kucharzik, N Lügering, K W Schmid, M A Schmidt, R Stoll, W Domschke Abstract antigens.5612 As M cells have a high capacity Background—The derivation and ul- for transcytosis of a wide range of microorgan- trastructural composition of M cells cov- isms and macromolecules, they are believed to ering the lymphoid follicles of Peyer’s act as an antigen sampling system.34 M cells patches is still unknown. Results from dif- can be characterised electron microscopically ferent animal models have shown that by their characteristic morphology, notably there are species specific diVerences in their atypical microvilli and the presence of an the composition of intermediate filaments invagination of the basolateral membrane har- between M cells and neighbouring entero- bouring leucocytes.47Since the first report on cytes. Little is known, however, about M cells in the human ileum1 and appendix,2 intermediate filaments of human M cells. numerous studies have been done to elucidate Aims—To compare components of the their morphology and to investigate functional cytoskeleton of human M cells with those aspects of M cells in diVerent animal species of adjacent absorptive enterocytes. (for review see Trier7). Little is known, Methods—The expression and localisation however, about the function and morphology of diVerent cytokeratins, vimentin, and of M cells in humans. Concerning their desmin in M cells was determined on folli- morphology, human M cells reveal an anasto- cle associated epithelia of human appen- mosing, short, ridgelike network of folds and dix using immunohistochemistry and occasionally short microvilli in strong contrast immunogold electron microscopy.
    [Show full text]
  • Feeding & Digestion
    Feeding & Digestion Why eat? • Macronutrients Feeding & Digestion – Energy for all our metabolic processes – Monomers to build our polymers 1. Carbohydrates 2. Lipids 3. Protein • Micronutrients – Tiny amounts of vital elements & compounds our body cannot adequately synthesize 4. Vitamins 5. Minerals • Hydration 6. Water Niche: role played in a FEEDING community (grazer, predator, • “Eat”: Gr. -phagy; Lt. -vore scavenger, etc.) • Your food may not Some organisms have specialized niches so as to: • increase feeding efficiency wish to be eaten! • reduce competition • DIET & Optimal foraging model: Need to maximize benefits (energy/nutrients) while minimizing MORPHOLOGY costs (energy expended/risks) • FOOD CAPTURE • MECHANICAL PROCESSING Never give up! Optimal Foraging Model Optimal Foraging Model • Morphology reflects foraging strategies • Generalist is less limited by rarity of resources • Specialist is more efficient at exploiting a specific resource Generalist OMNIVORE opossum CARNIVORE HERBIVORE wolf elephant Optimal foraging strategies: Need to maximize benefits (energy/nutrients) INSECTIVORE PISCIVORE while minimizing costs (energy shrew osprey expended / risks) MYRMECOPHAGORE • Tapirs have 40x more meat, but are anteater much harder to find and catch. Specialist So jaguars prefer armadillos. Heyer 1 Feeding & Digestion Bird Beaks Anteater Adaptations • Generalist & specialist bills • Thick fur • Small eyes • Long claws in front • Long snout • Long barbed tongue • No teeth FOOD CAPTURE SPECIALIZATIONS Fluid Feeding – Fluid Feeding • Sucking with tube – Suspension & Deposit Feeding – mosquitoes & butterflies • Lapping with brushy tongue – Grazers & Browsers – hummingbirds, fruit bats – Predation: Ambush & Attraction – bees – Venoms – Tool Use & Team Efforts Hummingbird tongue Suspension Feeding (Filter Feeding) • Filter food (plankton, small animals, organic particles) suspended in water. • http://www.youtube.com/watch?v=1wpQ8HQEkvE • Filters are hard, soft or even sticky.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • 46 Small Intestine
    Small Intestine The small intestine extends between the stomach and colon and is divided into the duodenum, jejunum, and ileum. Although there are minor microscopic differences among these subdivisions, all have the same basic organization as the rest of the digestive tube - mucosa, submucosa, muscularis externa, and serosa or adventitia. The transition from one segment to another is gradual. The proximal 12 inches of its length is generally considered duodenum, the remaining proximal two-fifths jejunum and the distal three-fifths ileum. The small intestine moves chyme from the stomach to the colon and completes the digestive processes by adding enzymes secreted by the intestinal mucosa and accessory glands (liver and pancreas). Its primary function, however, is absorption. Approximately 8 to 9 liters of fluid enters the small intestine on a daily basis. Food and liquid intake represents 1-2 liters of this volume the remainder coming from endogenous sources such as salivary, gastric, intestinal, pancreatic, and biliary secretions. Of this volume 6-7 liters is absorbed in the small intestine with only 1-2 liters entering the colon the majority of which is absorbed at this location. Only as very small amount of fluid is evacuated in the stool. The majority of water is absorbed passively in the gut and is largely dependent on an osmotic gradient. Specializations for Absorption Three specializations - plicae circulares, intestinal villi, and microvilli - markedly increase the surface area of the intestinal mucosa to enhance the absorptive process. It is estimated that these morphological features provide an absorptive surface area of 200 M2. Plicae circulares are large, permanent folds that consist of the intestinal mucosa and a core of submucosa.
    [Show full text]
  • Effects of Microflora on the Dimensions of Enterocyte Microvilli in the Rat J.-C
    Effects of microflora on the dimensions of enterocyte microvilli in the rat J.-C. Meslin, E. Sacquet, S. Delpal To cite this version: J.-C. Meslin, E. Sacquet, S. Delpal. Effects of microflora on the dimensions of enterocyte microvilli in the rat. Reproduction Nutrition Développement, 1984, 24 (3), pp.307-314. hal-00898154 HAL Id: hal-00898154 https://hal.archives-ouvertes.fr/hal-00898154 Submitted on 1 Jan 1984 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Effects of microflora on the dimensions of enterocyte microvilli in the rat J.-C. MESLIN, E. SACQUET S. DELPAL Station de Recherches de Nutrition, /./V./7./! 78350 Jouy-en-Josas, France. (*) Laboratoire des Animaux sans Germes, CNRS, lNRA, 78350 Jouy-en-Josas, France. Summary. The length and diameter of enterocyte microvilli at mid-villus position were measured on electron-micrographs. The duodenum, jejunum and ileum of axenic (germfree) and holoxenic (conventional) inbred rats fed the same diet have been studied. The microvilli were significantly shorter in all these intestinal regions when the microflora was present. The decrease in microvillus length (due to the presence of microflora), expressed as a percentage of the length in axenic rat, was 5 % in the duodenum, 9 % in the jejunum and 18 % in the ileum.
    [Show full text]
  • Microvillus Atrophy: Information for Families
    Microvillus atrophy: information for families Microvillus atrophy is a life threatening condition causing severe diarrhoea in the first few days or weeks after birth. This information sheet from Great Ormond Street Hospital (GOSH) explains the causes, symptoms and treatment of microvillus atrophy. Microvillus atrophy is caused by an abnormality in (chemical messengers) and nerves, so that food is the cells in the small intestine that make it squeezed rhythmically through the system impossible for them to absorb any fluid or (peristalsis). nutrients from food. Once food has been processed in the stomach, it The gastrointestinal (GI) tract is a complex organ empties into the small intestine where the that extends as a hollow tube from the mouth to majority of digestion and absorption occurs. Here the anus. Its main function is to break down food it is mixed with bile and pancreatic juice so it can be absorbed into the bloodstream. The containing enzymes (proteins that cause or speed process of moving food through the GI tract up a chemical reaction). involves a complex interaction between hormones Ref: 2019F1440 © GOSH NHS Foundation Trust, September 2019 Page 1 of 3 The broken down nutrients are then small enough to pass through the wall of the small intestine, which contains small finger-like structures called villi, and then absorbed by the blood. The blood is carried away from the small intestine through the hepatic portal vein to the liver, where it is filtered, toxins are removed and the nutrients are processed. The residue then passes into the large intestine, where water is absorbed to form solid faeces (poo).
    [Show full text]