Fission-Track Dating

Total Page:16

File Type:pdf, Size:1020Kb

Fission-Track Dating 1. Introduction and Application 3. Sampling Methods Fission-track (FT) dating is utilized in a number of geologic studies to obtain time-temperature information on bedrock and sediment deposit. Tracks are produced by fission decay events of 238U and thus the mineral lattice damage (track) is equivalent to daughter isotopes measured in other radiometric dating methods. In typical FT dating several hundred of apatite or zircon grains are mounted, and polished to expose internal mineral surfaces. The spontaneous tracks that intersect this internal surface are etched chemically and become visible with an optical microscope (Fig. 1). Track densities are commonly determined by counting the number of tracks in a certain area. Determination of the amount of parent isotope is traditionally accomplished by neutron irradiation that induces Figure 1. Fission tracks in a detrital apatite from the Cretaceous fission of 235U. The inducted tracks are etched and counted Jackass Mountain Group in southern BC. Fission tracks are in an external detector over the same area of the chemically enlarged before counting with high magnification on spontaneous track count. an optical microscope. Grain is about 200 µm across. Fission tracks form continuously at all temperatures and Sampling for fission-track dating involves collection of several depths, but anneal completely at high temperatures of kilograms of candidate rock from lithologies in the field that are >120°C in apatite and >250–300°C in zircon. There is a thought to have the highest potential to yield apatite and/or temperature window where track annealing is slowed down zircon. In typical field sampling, we generally use new large significant enough that it causes track accumulation and canvas sample bags, and we fill these slightly over half way. length shortening. This partial annealing zone for tracks in Generally the rock is coarsely crushed in the field so that sample apatite and zircon is at temperatures ranging from 60–120°C pieces (≤10 cm) can go directly into a jaw crusher in the lab. and 210–300°C, respectively. Particularly for apatite, the track Collecting appropriate samples, which will have a high yield of lengths are measured and used for thermal history modeling. suitable grains, is the most challenging aspect of field collection. FT analysis is commonly used to study geologically young mountain belts, where rock cooling is a function of uplift and erosion, tectonic denudation, and differential exhumation due to faulting or varying climate driven surface processes. Detrital FT dating is used to investigate changes in source rock exhumation through time. FT analysis on modern sediment is used to gain an integrated cooling signal over an entire catchment, which may otherwise not be accessible for bedrock sampling. Due to its thermal sensitivity FT analysis is a powerful tool to study the thermal history of basin strata such as determining maximum burial/heating and timing of cooling and basin inversion. Figure 2: Collecting samples from schistose turbidites in southern Alaska. 2. Age Range and Suitable Geologic Material Datable range depends on the uranium concentration of the In the sedimentary environment, hydrodynamic sorting of heavy mineral. Typical FT ages range from 1–500 Ma. For zircon with minerals (apatite, zircon) results in concentration in coarser- typical uranium concentrations, dates in the Paleozoic grained beds. For example, in turbidites we spend a considerable become complicated due to high track densities. Very high- amount of time looking for the coarsest beds, and then we try to density fission tracks can be counted using a Scanning sample the bottom of graded beds to get the coarsest available fraction. Sampling is less complicated in plutonic rocks, especially Electron Microscope (SEM), which extends the datable range if granitic in composition. Note that zircon is relatively robust and to ~1 Ga. Apatite and zircon are the most commonly used resistant during diagenesis and alteration, but apatite is not. Thus minerals in FT dating, which are found in acidic to if your study is targeting apatite, it is important to collect rocks intermediate magmatic rocks, clastic sediment, and their that are as fresh and unweathered as possible. metamorphic derivatives. Eva Enkelmann, UofC Thermochronology lab, Calgary, Canada, [email protected] John I. Garver, Union College Fission-track lab, Schenectady, NY, [email protected] • In exhumation studies, a common problem is the 4. Sample Integrity and Considerations thermal effects of young igneous activity (e.g. dikes). Key Assumptions for FT Dating In these settings it should be obvious to avoid sampling rocks near dikes and sills, but it is not uncommon for Most fission-track studies are aimed at documenting either: a) the thermal veil to be larger and more substantial. exhumation and rock cooling; or b) provenance and source terrain cooling. In all applications there are a few key assumptions in the • dating methodology. One of the most important is that the dating In provenance studies, the lithology of the source approach has full quantified track density and that that track rocks matter, and some high-yield rock types can density represents all fission tracks on an internal plane in the dominate the signal. Detrital FT ages may reflect crystal (dated surface is a polished internal surface of the crystal, cooling due to source rock exhumation or volcanic and that surface needs to have 4π geometry). Another is that the input uranium determination is accurate and representative of the area • with counted fission tracks. In most FT dating the external detector In provenance studies, stratigraphy and facies matter. method is used. In this approach, thermal neutron irradiation When strata are used to understand exhumation, the causes induced fission in 235U, and the uranium determination is deposition age of basin strata is required to evaluate calculated using the isotopic ratio between 235U and 238U. partial or full annealing of tracks due to post- For exhumation studies the relationship between closure depositional heating. temperature and depth. These complicated and interrelated components include determination of the effective closure 5. Laboratories in North America temperature, which is dependent on the rate of cooling, and the disposition of the geothermal gradient in space and time. In • Appalachian State University, Gabriel Casale, provenance studies there are a number of simplifying assumptions [email protected] that need to be made, including some knowledge of changes of the • source terrain and drainage basin through time, the transfer of Dalhousie University, Isabelle Coutand, [email protected] datable minerals to the site of deposition, and the effects of post- • https://www.dal.ca/faculty/science/earth- depositional thermal annealing sciences/faculty_staff/faculty/coutand_i.html Primary Considerations at the Outcrop • Stanford University, Trevor Dumitru, Grain size and composition matter • https://pangea.stanford.edu/research/groups/thermoc • Target rocks of felsic to intermediate composition hronology/index.php?page=1 • Medium to coarse-grain metamorphic and sedimentary rocks tend to have better yields. • Union College, John Garver, [email protected] • Medium to coarse sand deposits on river banks • http://minerva.union.edu/garverj/FT/FThome.html Sample size • • Typical magmatic and metamorphic rocks 3-4 kg University of Arizona, Stuart Thomson, [email protected] • Most clastic sedimentary rocks, 2–6 kg • https://sites.google.com/site/arizonaftlab/home • Unconsolidated sand from modern environments, collect a 1 gallon bag, but 100 grams if heavies are • University of Calgary, Eva Enkelmann concentrated with a gold pan. [email protected] • http://enkelmann.weebly.com/facilities.html Considerations for taking samples • • Elevation of samples are important in most typical Occidental College, Ann Blythe, [email protected] exhumation studies. So, if a positive age vs. elevation relationship is expected, document sample elevation. Commercial FT Labs: • GeoSep Services, Paul O’Sullivan, • Fault zones, and other environments that may have [email protected] experienced hot fluids to sufficient temperatures to • http://geoseps.com/ cause track annealing. Eva Enkelmann, UofC Thermochronology lab, Calgary, Canada, [email protected] John I. Garver, Union College Fission-track lab, Schenectady, NY, [email protected] .
Recommended publications
  • Insights Into the Thermal History of North-Eastern Switzerland—Apatite
    geosciences Article Insights into the Thermal History of North-Eastern Switzerland—Apatite Fission Track Dating of Deep Drill Core Samples from the Swiss Jura Mountains and the Swiss Molasse Basin Diego Villagómez Díaz 1,2,* , Silvia Omodeo-Salé 1 , Alexey Ulyanov 3 and Andrea Moscariello 1 1 Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, 1205 Geneva, Switzerland; [email protected] (S.O.-S.); [email protected] (A.M.) 2 Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex GU28 0LH, UK 3 Institut des sciences de la Terre, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland; [email protected] * Correspondence: [email protected] Abstract: This work presents new apatite fission track LA–ICP–MS (Laser Ablation Inductively Cou- pled Plasma Mass Spectrometry) data from Mid–Late Paleozoic rocks, which form the substratum of the Swiss Jura mountains (the Tabular Jura and the Jura fold-and-thrust belt) and the northern margin of the Swiss Molasse Basin. Samples were collected from cores of deep boreholes drilled in North Switzerland in the 1980s, which reached the crystalline basement. Our thermochronological data show that the region experienced a multi-cycle history of heating and cooling that we ascribe to burial and exhumation, respectively. Sedimentation in the Swiss Jura Mountains occurred continuously from Early Triassic to Early Cretaceous, leading to the deposition of maximum 2 km of sediments. Subsequently, less than 1 km of Lower Cretaceous and Upper Jurassic sediments were slowly eroded during the Late Cretaceous, plausibly as a consequence of the northward migration of the forebulge Citation: Villagómez Díaz, D.; Omodeo-Salé, S.; Ulyanov, A.; of the neo-forming North Alpine Foreland Basin.
    [Show full text]
  • Trackflow, a New Versatile Microscope System for Fission Track
    https://doi.org/10.5194/gchron-2019-13 Preprint. Discussion started: 23 October 2019 c Author(s) 2019. CC BY 4.0 License. Technical note: TRACKFlow, a new versatile microscope system for fission track analysis Gerben Van Ranst1, Philippe Baert2, Ana Clara Fernandes2, Johan De Grave1 1Department of Geology, Ghent University, Ghent, 9000, Belgium 5 2Nikon Belux, Groot-Bijgaarden, 1702, Belgium Correspondence to: Gerben Van Ranst ([email protected]) Abstract. We here present TRACKFlow, a new system with dedicated modules for the fission track (FT) laboratory. It is based on the motorised Nikon Eclipse Ni-E upright microscope with the Nikon DS-Ri2 full frame camera and is embedded within the Nikon 10 NIS-Elements Advanced Research software package. TRACKFlow decouples image acquisition from analysis to decrease schedule stress of the microscope. The system further has the aim of being versatile, adaptable to multiple preparation protocols and analysis approaches. It is both suited for small-scale laboratories and is also ready for upscaling to high-throughput imaging. The versatility of the system, based on the operators’ full access to the NIS-Elements package, exceeds that of other systems for FT and further expands to stepping away from the dedicated FT microscope towards a general microscope for 15 Earth Sciences, including dedicated modules for FT research. TRACKFlow consists of a number of user-friendly protocols which are based on the well plate design that allows sequential scanning of multiple samples without the need of replacing the slide on the stage. All protocols include a sub-protocol to scan a map of the mount for easy navigation through the samples on the stage.
    [Show full text]
  • Downstream Changes of Alpine Zircon Fission-Track Ages in the Rhône and Rhine Rivers
    Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine rivers. Matthias Bernet, Mark T. Brandon, John I. Garver, Brandi Molitor To cite this version: Matthias Bernet, Mark T. Brandon, John I. Garver, Brandi Molitor. Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine rivers.. Journal of Sedimentary Research, Society for Sedimentary Geology, 2004, 74, pp.82-94. hal-00097147 HAL Id: hal-00097147 https://hal.archives-ouvertes.fr/hal-00097147 Submitted on 21 Sep 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alpine zircon fission-track ages in the Rhône and Rhine rivers DOWNSTREAM CHANGES OF ALPINE ZIRCON FISSION-TRACK AGES IN THE RHÔNE AND RHINE RIVERS MATTHIAS BERNET1, 2, MARK T. BRANDON1, JOHN I. GARVER3, AND BRANDI MOLITOR3,4 1Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520- 8109, U.S.A. 2present address: Laboratoire de Géodynamique des Chaînes Alpines, Université Joseph Fourier, 38041Grenoble Cedex 9, France email: [email protected] 3Geology Department, Union College, Schenectady, New York 12308-2311, U.S.A. 4present address: Western Washington University, Bellingham, Washington, 98225, U.S.A.
    [Show full text]
  • Fission Track Dating by Charles W. Naeser U.S. Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Fission Track Dating By Charles W. Naeser U.S. Geological Survey Open-File Report 76-190 1976 revised Jan. 1978 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature PART I INTRODUCTION TO FISSION TRACK DATING History and Theory: Techniques used for dating geologic and archaeologic materials using fission-fragment tracks have evolved 'over the last decade. Fission-track dating is just one facet of the rapidly expanding field of Solid State Track Recorders (SSTR) (Fleischer and others, 1975). The early developmental work on SSTR was done by three physicists, Robert L. Fleischer, Introduction The purpose of this report is to outline the basics of the fission track dating method. It is divided into two parts. The first part deals with the theory, annealing, and a few geologic examples of fission-track dating. The second part is a laboratory cook book. I have tried to give step by step instructions for dating most materials. No doubt there are a number of different and possibly better wrays to proceed, but I have found these to be useful and successful. This report is assembled from a number of different sources. It combines lecture notes, and a listing of labora­ tory procedures made for visitors and students. Fission-track dating is not a do-it-yourself, start from scratch type of a project. There are a number of possible pitfalls and blind alleys to which the unsuspecting can stray. It is also very possible to get the "right" age for very wrong reasons.
    [Show full text]
  • Mesozoic and Cenozoic Thermal History of the Western Reguibat Shield West African Craton)
    This is a repository copy of Mesozoic and Cenozoic thermal history of the Western Reguibat Shield West African Craton). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/124296/ Version: Accepted Version Article: Gouiza, M orcid.org/0000-0001-5438-2698, Bertotti, G and Andriessen, PAM (2018) Mesozoic and Cenozoic thermal history of the Western Reguibat Shield West African Craton). Terra Nova, 30 (2). pp. 135-145. ISSN 0954-4879 https://doi.org/10.1111/ter.12318 © 2017 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Gouiza M, Bertotti G, Andriessen PAM. Mesozoic and Cenozoic thermal history of the Western Reguibat Shield (West African Craton). Terra Nova. 2018;30:135–145. https://doi.org/10.1111/ter.12318, which has been published in final form at https://doi.org/10.1111/ter.12318. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Apatite Thermochronology in Modern Geology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Apatite thermochronology in modern geology F. LISKER1*, B. VENTURA1 & U. A. GLASMACHER2 1Fachbereich Geowissenschaften, Universita¨t Bremen, PF 330440, 28334 Bremen, Germany 2Institut fu¨r Geowissenschaften, Ruprecht-Karls-Universita¨t Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany *Corresponding author (e-mail: fl[email protected]) Abstract: Fission-track and (U–Th–Sm)/He thermochronology on apatites are radiometric dating methods that refer to thermal histories of rocks within the temperature range of 408–125 8C. Their introduction into geological research contributed to the development of new concepts to interpreting time-temperature constraints and substantially improved the understanding of cooling processes within the uppermost crust. Present geological applications of apatite thermochronological methods include absolute dating of rocks and tectonic processes, investigation of denudation histories and long-term landscape evolution of various geological settings, and basin analysis. Thermochronology may be described as the the analysis of radiation damage trails (‘fission quantitative study of the thermal histories of rocks tracks’) in uranium-bearing, non-conductive using temperature-sensitive radiometric dating minerals and glasses. It is routinely applied on the methods such as 40Ar/39Ar and K–Ar, fission minerals apatite, zircon and titanite. Fission tracks track, and (U–Th)/He (Berger & York 1981). are produced continuously through geological time Amongst these different methods, apatite fission as a result of the spontaneous fission of 238U track (AFT) and apatite (U–Th–Sm)/He (AHe) atoms. They are submicroscopic features with an are now, perhaps, the most widely used thermo- initial width of approximately 10 nm and a length chronometers as they are the most sensitive to low of up to 20 mm (Paul & Fitzgerald 1992) that can temperatures (typically between 40 and c.
    [Show full text]
  • Fission Track Geochronology of the North Aleutian Cost #1 Well (Ocs-8218), Bristol Bay Basin, Alaska
    RI 2008-1J 177 FISSION TRACK GEOCHRONOLOGY OF THE NORTH ALEUTIAN COST #1 WELL (OCS-8218), BRISTOL BAY BASIN, ALASKA by Steven C. Bergman1, John Murphy2, and Shari Kelley3 ABSTRACT Zircon and apatite fi ssion-track analyses were performed on six core samples of Eocene to Miocene sedimentary and volcaniclastic rocks from depths of 1,280–5,090 m in the North Aleutian COST #1 well (NAC), Bristol Bay Basin, Alaska, for the purpose of constraining their thermal history and depositional provenance. Most apatite and zircon populations are complex and refl ect mixtures of several age compo- nents based on chi2 statistics. Most samples exhibit older zircon fi ssion-track ages than their corresponding apatite fi ssion-track ages, except for two samples at present temperatures (TP) within the apatite partial annealing zone that paradoxically show the opposite relationship. For the fi ve samples shallower than 3,382 m at TP = 38–104°C, mean and peak apatite fi ssion-track ages (30–74 Ma) are older than depositional ages (15–43 Ma) and mean track lengths range from 12 to 13 μm, together indicating that these samples have resided in the fi ssion-track stability zone since deposition (T<60–90°C), although a detrital age component would allow partial resetting of the fi ssion-track clock. The deepest sample, from 4,736 m depth (TP=144°C), displays a nearly totally reset apatite fi ssion-track age of 9±2 Ma with a mean track length of 9 μm, indicating it currently resides at temperatures within the apatite fi ssion-track partial annealing zone (>90–120°C); the fi ssion-track age and track length distribution refl ect signifi cant post-depositional annealing, yet not total annealing, refl ecting residence at temperatures below 130–140°C for geologic time periods.
    [Show full text]
  • Garver, JI, 2008, Fission-Track Dating. in Encyclopedia Of
    DATING. FISSION-TRACKS 247 DATING, FISSION-TRACKS Fission-track (FT) dating is a powerful and relatively simple method of radiometric dating that has made a significant impact on understanding the thennal history of the upper crust, the timing of volcanic events, and the source and age of archeolo­ gical artifacts. Unlike most other dating techniques, FT dating ' is uniquely suited to dating low-temperature thermal events , with common accessory minerals over a very wide geological , range (as much as 0.004-4,000 Ma and typically 0.1 - 2,000 Ma). The method involves using the number of fission events produced from the spontaneous decay of 23SU in common accessory minerals to date the time of rock cooling below clo­ sure temperature. Most current research using FT dating focuses on: (a) thermochronological studies of orogenic belts, (b) provenance and thennal analysis of basin sediments, (c) age control of poorly dated strata including tephrochronology, and (d) archeological applications. FT dating relies on the formation of damage lones, or fis­ sion tracks, in a crystal from the spontaneous decay of ura­ nium. Unlike other isotopic dating methods, the daughter 248 DATING, FISSION-TRACKS used in FT dating is an effect in the crystal mther than a daugh­ chemical attack, and as such could be etched large enough ter isotope. As such, the technique requires measurement of the to be visible with an ordinary optical microscope (i.e., 200x parent isotope (2J8U) and the daughter-like effect (fission tracks to 1,500x - Fleischer et aI., 1975). Thus the technique of FT shown in Figure D 17).
    [Show full text]
  • BCGS IC1997-03.Pdf
    For information on the contents of this document contact: Ministry of Employment and Investment Energy and Minerals Division British Columbia Geological Survey Branch 5 - 1810 Blanshard Street PO Box 9320, Stn Prov Gov't Victoria, BC, V8W 9N3 Attn: W.J. McMillan, Manager, Map ing Section Fax: 250-952-0381 [mail: [email protected] or; B. Grant, Editor, GSB Fax: 250-952-0451 E-mail : [email protected]. bc.ca Canadian Cataloguing in Publication Data I Main entry under title: Specifications and guidelines for bedrock mapping in British Columbia Includes bibliographical references: p. ISBN 0-7726-2950-1 1. Geological mapping - British Columbia. 2. Geology, Structural - British Columbia. 3. Geology - Maps - Symbols. I. British Columbia. Geological Survey Branch. Victoria British Columbia May 1997 October, 1996 TaMb Off GmQmQs Introduction . 3 Fission Track Dating Technique . 36 Part 1: Fundamental Bedrock Mapping Concepts 5 Usual Application of Geochronology . 36 Part 2: Mapping and Field Survey Procedures. 7 Materials Suitable for Dating. 36 2-1 Overview. 7 Rubidium-strontium Dating . 38 2-2 Bedrock Field Survey Databases . 10 Uranium-Lead Dating . 3 8 2-3 Quality Control, Correlation, and Map Lead Isotope Analysis . 38 Reliability . 11 Fission Track Dating . 38 Part 3: Data Representation On Bedrock Maps 13 Analytical Procedure . 39 3-1 Title Block . 13 Quaternary Dating Methods . 39 3-2 Base Map Specifications . 15 Radiocarbon Dating . 39 3-3 Reliability Diagrams . 15 Potassium-Argon Dating of Quaternary 3-4 Legend . 16 Volcanic Rocks. 40 3-5 Map Attributes . 17 Fission Track Dating . 40 3-6 Symbols. 17 Sampling . 41 3-7 Map-unit Designations .
    [Show full text]
  • Fission Tracks in Crystalline Solids Evidence for Accelerated Radioisotope Decay Within a Biblically Based Model
    Fission Tracks in Crystalline Solids Evidence for Accelerated Radioisotope Decay Within a Biblically Based Model Dr. Vernon R. Cupps Highlights • Nuclear fission—atom splitting—is used to date ancient rocks. • The various fission dating methods show results that are not only highly inconsistent with each other, they also don’t match the dates secular scientists expect. • It appears that neither fission dating nor the other dating methods have yet provided accurate results. Have you ever pulled apart a large mass of taffy and watched it break into two approximately equal masses? This is an illustration of what happens in the subatomic world when a 238U or 235U atom undergoes splitting, or fission. Nuclear fission is often used to date rocks to millions or billions of years old. But are these methods valid? The Basics of Nuclear Fission There are two basic types of nuclear fission. The first is spontaneous fission in which the nucleus becomes unstable and splits into fragments without the intervention of an outside agent. The second is induced fission in which an outside agent (such as a moving neutron) induces the nucleus to break apart. Sometimes a nucleus splits into approximately equal halves (e.g., 110Pd + 110Pd) and sometimes into unequal parts (e.g., 92Kr + 141Ba). In both cases, free neutrons are released. The yield of particular isotope fragments from this process can be approximately predicted using a formula developed by Rudstam1,2 and adapted to a computer program called FREYA by Vogt and Randrup.3 How Is Nuclear Fission Used for Dating? Crystals often contain trace amounts of radioactive atoms.
    [Show full text]
  • Isotopes and Geochronology
    What is an isotope? A Nuclide Z X Z = atomic number = number of protons A = mass number = number of nucleons (protons + neutrons) N = neutron number = number of neutrons, i.e. N = A–Z The same Z – isotopes The same A – isobars Vojtěch Janoušek: Radiogenic isotope geochemistry Relative atomic mass • Dalton (or atomic mass unit - a.m.u.) and geochronology = 1/12 of the mass of 12C Periodic table of elements Radioactive decay D.I. Mendeleev Decay constant λ reflects the stability of atoms = what is the proportion of atoms that decay in given time t NNe 0 t D D0 Ne 1 Half-life t1/2 = how long it takes for half of the atoms to decay ln20693 . t 1 2 1 Types of radioactive decay Types of radioactive decay -β decay 87 Rb 87Sr 176 Lu 176 Hf 187 187 α decay Re Os 147Sm 143Nd +β decay Types of radioactive decay Example of branched decay Spontaneous fission 2 Example of decay chain (238U) Calculating age and initial ratio • Radioactive isotope (87Rb, 147Sm, ...) • Radiogenic isotope (87Sr, 143Nd, ...) • Stable isotope (86Sr, 144Nd, ...) • R (radioactive isotope to stable) e.g., (87Rb/86Sr) , (147Sm/144Nd) I (radiogenic isotope to stable) e.g., (87Sr/86Sr), (143Nd/144Nd) Calculating age and initial ratio Radiogenic/radioactive/stable isotopes t 143 143 I I i Re 1 Nd Nd 144 144 1 Nd Nd i 143 143 147 t ln 1 Nd Nd Sm t 147 144 144 144 e 1 Sm Nd Nd i Nd 144 Nd 87 87 87 Sr Sr Rb t 86 86 86 e 1 Sr Sr i Sr 176 Hf 176 Hf 176 Lu et 1 177 Hf 177 Hf 177 Hf i 1 I Ii 187 187 187 t ln 1 Os Os Re t R 186 186 186 e 1 Os Os i Os Treatise on Geochemistry kap.
    [Show full text]
  • Cooling Histories of Mountain Ranges in the Southern Rio Grande Rift Based on Apatite Fission-Track Analysis—A Reconnaissance Survey
    Cooling histories of mountain ranges in the southern Rio Grande rift based on apatite fission-track analysis—a reconnaissance survey by Shari A. Kelley, Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining & Technology, Socorro, NM 87801-4796; and Charles E. Chapin, New Mexico Bureau of Mines & Mineral Resources, Socorro, NM 87801-4796 Abstract Fifty-two apatite fission-track (AFT) and two zircon fission-track ages were deter- mined during a reconnaissance study of the cooling and tectonic history of uplifts asso- dated with the southern Rio Grande rift in south-central New Mexico. Mack et al. (1994a, b) proposed that the southern rift has been affected by four episodes of extension beginning at about 35 Ma. The main phases of faulting started in the late Eocene, the late Oligocene, the middle Miocene, and the latest Miocene to early Pliocene, with each phase disrupting earlier rift basins and in some cases reversing the dip of the early rift half-grabens found in the vicinity of the southern Caballo Mountains. The timing of denudation derived from AFT data in the Caballo, Mud Springs, San Diego, and Dona Ana mountains are consistent with the episodes of uplift and erosion preserved in the Oligocene to Miocene Hayner Ranch and Rincon Valley Formations in the southern Caballo Mountains. Each mountain block studied in the southern rift has a unique history. AFT ages in the Proterozoic rocks on the east side of the San Andres Mountains record cooling of this mountain block at 21 to 22 Ma in re- sponse to the phase of extension that began in the late Oligocene.
    [Show full text]