Taf4b Transcription Networks Regulating Early Oocyte Differentiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ovarian Gene Expression in the Absence of FIGLA, an Oocyte
BMC Developmental Biology BioMed Central Research article Open Access Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor Saurabh Joshi*1, Holly Davies1, Lauren Porter Sims2, Shawn E Levy2 and Jurrien Dean1 Address: 1Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA and 2Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA Email: Saurabh Joshi* - [email protected]; Holly Davies - [email protected]; Lauren Porter Sims - [email protected]; Shawn E Levy - [email protected]; Jurrien Dean - [email protected] * Corresponding author Published: 13 June 2007 Received: 11 December 2006 Accepted: 13 June 2007 BMC Developmental Biology 2007, 7:67 doi:10.1186/1471-213X-7-67 This article is available from: http://www.biomedcentral.com/1471-213X/7/67 © 2007 Joshi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Ovarian folliculogenesis in mammals is a complex process involving interactions between germ and somatic cells. Carefully orchestrated expression of transcription factors, cell adhesion molecules and growth factors are required for success. We have identified a germ-cell specific, basic helix-loop-helix transcription factor, FIGLA (Factor In the GermLine, Alpha) and demonstrated its involvement in two independent developmental processes: formation of the primordial follicle and coordinate expression of zona pellucida genes. Results: Taking advantage of Figla null mouse lines, we have used a combined approach of microarray and Serial Analysis of Gene Expression (SAGE) to identify potential downstream target genes. -
Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897 -
Taf7l Cooperates with Trf2 to Regulate Spermiogenesis
Taf7l cooperates with Trf2 to regulate spermiogenesis Haiying Zhoua,b, Ivan Grubisicb,c, Ke Zhengd,e, Ying Heb, P. Jeremy Wangd, Tommy Kaplanf, and Robert Tjiana,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720; cUniversity of California Berkeley–University of California San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720; dDepartment of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; eState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; and fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Contributed by Robert Tjian, September 11, 2013 (sent for review August 20, 2013) TATA-binding protein (TBP)-associated factor 7l (Taf7l; a paralogue (Taf4b; a homolog of Taf4) (9), TBP-related factor 2 (Trf2) (10, of Taf7) and TBP-related factor 2 (Trf2) are components of the core 11), and Taf7l (12, 13). For example, mice bearing mutant or promoter complex required for gene/tissue-specific transcription deficient CREM showed decreased postmeiotic gene expression of protein-coding genes by RNA polymerase II. Previous studies and defective spermiogenesis (14). Mice deficient in Taf4b, reported that Taf7l knockout (KO) mice exhibit structurally abnor- a testis-specific homolog of Taf4, are initially normal but undergo mal sperm, reduced sperm count, weakened motility, and compro- progressive germ-cell loss and become infertile by 3 mo of age −/Y mised fertility. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Genetic Signatures of High-Altitude Adaptation and Geographic
www.nature.com/scientificreports OPEN Genetic signatures of high‑altitude adaptation and geographic distribution in Tibetan sheep Jianbin Liu1,2*, Chao Yuan1,2, Tingting Guo1,2, Fan Wang3, Yufeng Zeng1, Xuezhi Ding1, Zengkui Lu1,2, Dingkao Renqing4, Hao Zhang5, Xilan Xu6, Yaojing Yue1,2, Xiaoping Sun1,2, Chune Niu1,2, Deqing Zhuoga7* & Bohui Yang1,2* Most sheep breeding programs designed for the tropics and sub‑tropics have to take into account the impacts of environmental adaptive traits. However, the genetic mechanism regulating the multiple biological processes driving adaptive responses remains unclear. In this study, we applied a selective sweep analysis by combing 1% top values of Fst and ZHp on both altitude and geographic subpopulations (APS) in 636 indigenous Tibetan sheep breeds. Results show that 37 genes were identifed within overlapped genomic regions regarding Fst signifcantly associated with APS. Out of the 37 genes, we found that 8, 3 and 6 genes at chromosomes (chr.) 13, 23 and 27, respectively, were identifed in the genomic regions with 1% top values of ZHp. We further analyzed the INDEL variation of 6 genes at chr.27 (X chromosome) in APS together with corresponding orthologs of 6 genes in Capra, Pantholops, and Bos Taurus. We found that an INDEL was located within 5′UTR region of HAG1 gene. This INDEL of HAG1 was strongly associated with the variation of APS, which was further confrmed by qPCR. Sheep breeds carrying “C‑INDEL” of HAG1 have signifcantly greater body weight, shear amount, corpuscular hemoglobin and globulin levels, but lower body height, than those carrying “CA‑INDEL” of HAG1. -
TCF3 Antibody Product Type: Primary Antibodies Description: Rabbit Polyclonal to TCF3 Immunogen:3 Synthetic Peptides (Human) Conjugated to KLH
PRODUCT INFORMATION Product name: TCF3 antibody Product type: Primary antibodies Description: Rabbit polyclonal to TCF3 Immunogen:3 synthetic peptides (human) conjugated to KLH. Reacts with: Hu, Ms Tested applications: ELISA and WB. GENE INFORMATION Gene Symbol: TCF3 Gene Name: transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47) Ensembl ID: ENSG00000071564 Entrez GeneID:6929 GenBank Accession number: M65214.1 Omim ID:147141 SwissProt:P15923 Molecular weight of TCF3: 67.6kDa (Isoform E12) and 67.265kDa (Isoform E47) Function: Heterodimers between TCF3 and tissuespecific basic helixloophelix (bHLH) proteins play major roles in determining tissuespecific cell fate during embryogenesis, like muscle or early Bcell differentiation. Dimers bind DNA on Ebox motifs: 5'CANNTG3'. Binds to the kappaE2 site in the kappa immunoglobulin gene enhancer. Subunit structure: Efficient DNA binding requires dimerization with another bHLH protein. Forms a heterodimer with ASH1 and TWIST2. Isoform E12 interacts with GRIPE and FIGLA By similarity. Interacts with PTF1A and TGFB1I1. Component of a nuclear TAL1 complex composed at least of CBFA2T3, LDB1, TAL1 and TCF3 By similarity. Interacts with UBE2I. Subcellular localization: Nucleus Involvement in disease:Chromosomal aberrations involving TCF3 are cause of forms of preBcell acute lymphoblastic leukemia (BALL). Translocation t(1;19)(q23;p13.3) with PBX1; Translocation t(17;19)(q22;p13.3) with HLF. Inversion inv(19)(p13;q13) with TFPT. APPLICATION NOTE Recommended dilution: • ELISA: Antibody specificity was verified by direct ELISA against the 3 immunogen peptides. A titer of 1/15000 has been determined. Appropriate specificity controls were run. -
A Familial Study of Azoospermic Men Identifies Three Novel Causative Mutations in Three New Human Azoospermia Genes
ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes Moran Gershoni, PhD1, Ron Hauser, MD2, Leah Yogev, PhD2, Ofer Lehavi, MD2, Foad Azem, MD2, Haim Yavetz, MD2, Shmuel Pietrokovski, PhD1 and Sandra E. Kleiman PhD2 Purpose: Up to 1% of all men experience azoospermia, a condition of Results: We identified three novel likely causative mutations of azo- complete absence of sperm in the semen. The mechanisms and genes ospermia in three genes: MEIOB, TEX14, and DNAH6. These genes involved in spermatogenesis are mainly studied in model organisms, are associated with different meiotic processes: meiotic crossovers, and their relevance to humans is unclear because human genetic daughter cell abscission, and possibly rapid prophase movements. studies are very scarce. Our objective was to uncover novel human Conclusion: The genes and pathways we identified are fundamental mutations and genes causing azoospermia due to testicular meiotic for delineating common causes of azoospermia originating in muta- maturation arrest. tions affecting diverse meiotic processes and have great potential for Methods: Affected and unaffected siblings from three families were accelerating approaches to diagnose, treat, and prevent infertility. subjected to whole-exome or whole-genome sequencing, followed by comprehensive bioinformatics analyses to identify mutations suspected Genet Med advance online publication 16 February 2017 to cause azoospermia. These likely mutations were further screened in azoospermic and normozoospermic men and in men proven to be fer- Key Words: azoospermia; crossover; meiosis; rapid prophase tile, as well as in a reference database of local populations. -
Genetics of Azoospermia
International Journal of Molecular Sciences Review Genetics of Azoospermia Francesca Cioppi , Viktoria Rosta and Csilla Krausz * Department of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; francesca.cioppi@unifi.it (F.C.); viktoria.rosta@unifi.it (V.R.) * Correspondence: csilla.krausz@unifi.it Abstract: Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole- Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients. Keywords: azoospermia; infertility; genetics; exome; NGS; NOA; Klinefelter syndrome; Y chromosome microdeletions; CBAVD; congenital hypogonadotropic hypogonadism Citation: Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. 1. Introduction Int. J. Mol. Sci. -
Targeted Next-Generation Sequencing Identifies Novel Sequence Variations of Genes Associated with Nonobstructive Azoospermia In
CLINICAL RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2019; 25: 5801-5812 DOI: 10.12659/MSM.915375 Received: 2019.01.26 Accepted: 2019.04.09 Targeted Next-Generation Sequencing Identifies Published: 2019.08.04 Novel Sequence Variations of Genes Associated with Nonobstructive Azoospermia in the Han Population of Northeast China Authors’ Contribution: BCE 1 Xiangyin Liu 1 Center for Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Study Design A BDF 1 Qi Xi Jilin University, Changchun, P.R. China Data Collection B 2 Changchun Jida Middle School Experimental School, Changchun, Jilin, P.R. China Statistical Analysis C BF 1 Leilei Li Data Interpretation D CF 2 Qiyuan Wang Manuscript Preparation E BD 1 Yuting Jiang Literature Search F Funds Collection G EF 1 Hongguo Zhang CFG 1 Ruizhi Liu AG 1 Ruixue Wang Corresponding Author: Ruixue Wang, e-mail: [email protected] Source of support: Funding was provided by the Science and Technology Department of Jilin Province (20160101048JC) Background: This study aimed to screen common and low-frequency variants of nonobstructive azoospermia (NOA)-associated genes, and to construct a database for NOA-associated single nucleotide variants (SNVs). Material/Methods: Next-generation sequencing of 466 NOA-associated genes was performed in 34 patients with NOA (mean age, 29.06±4.49 years) and 40 sperm donors (mean age, 25.08±5.75 years) from the Han population of northeast China. The SNV database was constructed by summarizing NOA non-negatively-associated SNVs showing sta- tistical differences between NOA cases and controls, and then selecting low-frequency variants using Baylor’s pipeline, to identify statistically valid SNVs. -
Dynamic Transcriptional and Chromatin Accessibility Landscape of Medaka Embryogenesis
Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Dynamic Transcriptional and Chromatin Accessibility Landscape of Medaka Embryogenesis Yingshu Li1,2,3,+, Yongjie Liu1,2,3,+, Hang Yang1,2,3, Ting Zhang1,2, Kiyoshi Naruse4,*, Qiang Tu1,2,3,* 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China 2 Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan + These authors are joint first authors and contributed equally to this work. * Corresponding authors: [email protected], [email protected] Abstract Medaka (Oryzias latipes) has become an important vertebrate model widely used in genetics, developmental biology, environmental sciences, and many other fields. A high-quality genome sequence and a variety of genetic tools are available for this model organism. However, existing genome annotation is still rudimentary, as it was mainly based on computational prediction and short-read RNA-seq data. Here we report a dynamic transcriptome landscape of medaka embryogenesis profiled by long-read RNA-seq, short-read RNA-seq, and ATAC-seq. Integrating these datasets, we constructed a much-improved gene model set including about 17,000 novel isoforms, identified 1600 transcription factors, 1100 long non-coding RNAs, and 150,000 potential cis-regulatory elements as well. Time-series datasets provided another dimension of information. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
TBP2 Is Essential for Germ Cell Development by Regulating Transcription and Chromatin Condensation in the Oocyte
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte Emese Gazdag,1,4 Ange`le Santenard,1,2,4 Ce´line Ziegler-Birling,1,2 Gioia Altobelli,1,3 Olivier Poch,3 La`szlo` Tora,1,5 and Maria-Elena Torres-Padilla1,2,6 1Department of Functional Genomics, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France; 2Department of Developmental and Cell Biology, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France; 3Bioinformatics and Integrative Biology Laboratory, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France Development of the germline requires consecutive differentiation events. Regulation of these has been associated with germ cell-specific and pluripotency-associated transcription factors, but the role of general transcription factors (GTFs) remains elusive. TATA-binding protein (TBP) is a GTF involved in transcription by all RNA polymerases. During ovarian folliculogenesis in mice the vertebrate-specific member of the TBP family, TBP2/ TRF3, is expressed exclusively in oocytes. To determine TBP2 function in vivo, we generated TBP2-deficient mice. We found that Tbp2À/À mice are viable with no apparent phenotype. However, females lacking TBP2 are sterile due to defective folliculogenesis, altered chromatin organization, and transcriptional misregulation of key oocyte-specific genes.