A. Ii., BARKEIJ. 2209,01

Total Page:16

File Type:pdf, Size:1020Kb

A. Ii., BARKEIJ. 2209,01 July 23, 1940,WALVE GEAR FOR MULTIGYLINDB!.A. ii., BARKEIJ. RADIAL ENGINES, TOGETHER2,209,01 WITH A REDUCTION AND CLUTCH DRIVE GEAR Original Filed Dec. 9, 1935 a J7Aer-/wza 7- JAQUAwca (33292468 574/e7-Aau57-Jequawcz- 722463,35. s Patented July 23, 1940 2,209,013 UNITED STATES PATENT OFFICE 2,209,013 WALWE GEAR FOR IMULTICYLNER, RADAL ENGENES, TOGETHER WITH A REDUC ON AND CLUCH DRIVE GEAR Jean A. H. Barkeij, Altadena, Calif. Application December 9, 1935, Serial No. 53,450 Renewed. April 3, 1939 At Cains. (C.123-55) My invention relates more in particular to the Section line 3-3 thereof, showing three cams A, radial type of engine, having cylinders arranged B, and C arranged substantially at 120. in star form, and I provide therein a camshaft Referring to the figures in particular, in Fig. with a plurality of cams which lifts the inlet 1 the cylinders are indicated respectively in clock 5 valve of one cylinder and subsequently the ex wise direction by the numbers to 9, and each haust valve of another cylinder. It is, however, inlet-valve (the valve, valve-rocker, pushrod, understood, that the reduction gear and clutch pushrod-cover, etc.) is indicated by the capital drive is independent of the radial type. letter I and each exhaust valve (with similar My invention further relates to a reduction parts) is indicated by the letter E. The pushrod 0. gear for a propeller drive consisting of a single tubes or covers are indicated by 8, the cam foll O Sun-gear on the crankshaft, a number of Sta lower proper by , and the cam-follower-guide tionary planetary gears, and a ring gear around by 6. and meshed with said planetary gears. This in In Fig. 2, the crankshaft is designated by num vention is independent of the radial formation ber , having at the left end thereof a sun gear 5 of the cylinders. , geared to a plurality (3 or 4) of gear wheels 5 My invention further relates to a lubricating 2d having in the inside thereof a needle bearing System by which the oil is led from the crank Or ball, or roller-bearing, which bearing rests on shaft to said reduction gear and at the same time a stationary shaft 2. The present construction towards the propeller Shaft. is cheaper to make and easier to assemble, be My invention further relates to a reduction cause the shafts are inserted from the left into i20 20 gear for a propeller drive, in which the propeller the anti-friction bearings and into the crankcase shaft has a bearing in the crankshaft and reduc body 4. tion gears between said propeller Shaft and crank Said gear wheels 2d. are geared to the internal shaft. gear Wheel 30, which forms a unit with the cam 25 My invention further relates to a resilient Shaft 3 having on the outside thereof three cams : clutch drive between said propeller shaft and said A, B and C. This camshaft rests upon a bearing crankshaft. This is also independent of the ra b on each side of said internal gear wheel .3a, dial-form, though associated with the camshaft and said bronze (or other metal) bearing rests and propeller drive. upon a shelf 4d. of the crankcase f4. 30 It is further the object of my invention to The camshaft 3 has only three cams arranged merge the camshaft-drive with the gear reduc radially at 120 and in planes perpendicular to tion drive for the propeller and to combine said the axis thereof, in three parallel planes. Each drive with said reduction drive, to deaden the cam lifts the three inlet valves of three cylinders noise of said gear drive and also of said propeller. arranged at 120°, and the three exhaust valves of 35 The motor crankshaft and propeller rotate in op three cylinders arranged at 120°, said two sets of 3. posite direction. three cylinders being adjacent to each other. Other objects will appear in the following de This camshaft is shown in sideView in Fig. 3. Scription. Each can has about the length of 120° of the cir Referring to the accompanying drawing, Fig. 1 cumference of the can, and may be shaped in any form which will allow a high speed of the is: 40 shows diagrammatically the arrangement of the motor, and does not require excessive Spring pres nine cylinders with intervals of 40 around a Sure to keep the Waves 2 in touch with the Valve crankshaft. Each cylinder has an overhead rockers 9 at any time. I use by preference a valve-lifting arrangement for each exhaust- and cam-follower as now used in this type of engine, each inlet-Valve, as is well known in the art. having a roller, which rotates on a stationary & 45 In the present arrangement the exhaust and in shaft in the cam follower, 7. s let valves alternate with each other as shown in Although in the present construction the gear the dra Wing, in Fig. i. reduction drive is merged with the camshaft Fig. 2 shows Fig. 1. On the section line 2-2 drive, it is understood that the specific camshaft 50 thereof, going approximately through the axes of rotating at half engine speed and having Only cylinders and 6, and shows in Wertical CrOSS SeC three cams may be applied separately on engines, tion the left part of the motor and crankcase, apart from the gear reduction shown, the propel the camshaft drive, the reduction gear and the ler being fastened immediately to the crankshaft. clutch drive for the propeller. The cam A. operates for instance the inlet 55 Fig. 3 shows the camshaft 3 of Fig. 2 on the valves of cylinders 1, 7, 4 and the exhaust Valves 55 2 2,209,013 of cylinders 9, 6, 3. The cam B operates the inlet valves, one on each side of the cylinder barrel valves of cylinders 5, 2, 8 and the exhaust valves practically opposite each other. of cylinders 4, 17. The cam C operates the in The camshaft, camshaft bearing, gear Wheels let valves of cylinders 3, 9, 6 and the exhaust are oiled under pressure from the oil lead 23 valves of cylinders 2, 8, 5. It is understood, of shown in Fig. 2 by a dotted line through the left course, that this arrangement may be shifted Wall of the crankcase f4. However, it is under around, but one cam will always lift three inlet stood that the entire gear may be lubricated from valves of three cylinders arranged at 120°, and a central oil conduit 24 in the crankshaft (, three exhaust valves of three other cylinders, also leading oil to the Sungear and from there to O arranged at 120. the gear wheels 2d. and to the camshaft 3, pro O It is understood that the radial angle of the vided on its bearing Surface with oil grooves in pushrods 8 may be varied so that the proper any effective manner. This conduit 24 may fur length of the exhaust period of one cylinder is ther lead oil to the bearing in the nose piece is properly related to the inlet period of the other and to the mechanism to change the pitch of the 5 cylinder, which may be approximately of the propeller blades, indicated by 25 in Fig. 1. These 5 Same length. The angle of the valves to the cyl tWO oil leads 23 and 24 communicate with each inder axis can be varied also considerably so that other through the Space in which said gear wheels enough leeway is left all around to apply conven f2 rotate between the sun gear, and camshaft, iently the present construction. The operation Said Space having a branch from the oil lead 24 of the Valve gear will be explained next. In Figs. and a branch from the oil lead 23 in the Wall of 20 3, 2 and in Fig. 1, the camshaft 3 is drawn in the crankcase. - Such a position that the cam. A begins to lift the Warious modifications of all these latter fea inlet Valve of cylinder , and the can B begins tures are included within the scope of the foll to lift the exhaust valve of cylinder 7, and the lowing claims. inlet valve of cylinder 6 is lifted. In the drawing I claim: 25 and description we assume, as said before, that 1. In a nine cylinder radial engine, having its the exhaust and inlet period are each about 240° cylinders arranged Substantially at 40° interval, Crankshaft revolution, and the compression and an exhaust valve and an inlet valve for each cyl expansion period together also 240°. The axes of inder, pushrods for said valves and camfollowers 30 the pushrods of the various cylinders in Fig. 1 are for Said pushrods, a camshaft having three cams 30 shown about radially, intersecting each other in located in three parallel planes, each of said cams the axis of the crankshaft. It is, however under lifting in proper sequence for a fourstroke cycle Stood that their angle may be greatly varied so Operation an exhaust valve of one cylinder and that their axes are tangential to a circle, de an inlet valve of another cylinder in spaced re Scribed around the axis of the crankshaft. The lationship. 35 angle between the axes of the pushrod of inlet 2. In a nine cylinder radial engine, having its Valve of cylinder , and of the corresponding Cylinders arranged at 40°, a camshaft rotating at pushrod of exhaust valve of cylinder 9 is shown half engine Speed, said camshaft having three as approximately 60°.
Recommended publications
  • DUMS I{ATIONALADVISORY COMMITTEE for AERONAUTICS
    ,- TECHN1CAL MEMO.RAI?DUMS i{ATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. No. 309 —. LIGHT AEROPLANE ENGINE DEVELOPIM1lT. ... By Lieut. -Col. L. F. R, Fell. (Paper read at a joint meeting of the Royal Aeronautical Society and of the In8tit~~tion of Au_kornobileEngineersj February 19, 1925.) ..,’ —.—->... ,.. ,, April, 1925. —- .-— — 31176014410519 “LIGHT AEROPLANZ ENGINE.D~EIJOp~JE]TT~* ByLieut.-Col.-F ..F. R. Fell. It has frequently been stated and written that in order to popularize li,ght aircraft the”first essential is the production of a reliable engine capable of being easily maintained and.h,av- ing a long lif~, at the same time selling at a low figure. In the first part of this lecture it” is desired to point out the difficulties in the way of realizing this ideal before re~krking on the claims of the various types for adoption. Difficulties in the way of the Production of Light Aircraft Engines In the first place the public, and even aircraft designers, have been misled as to the t-ypeof engine that”is required by statements made in the nontechnical and sclilitcchnicalPress to the effect that it is possible to fly an aeroplane satisfactorily with a motorcycle engine. At this stage it is desired to state quite definitely that this is’impossible, as figures, which will be given later, cl-earlyindicate. T’nemethod of rating on capacity, instead of on a “~. basis - the normal manner for aircraft engines - has also caused—. consid- * Paper read at a joint mcetingof the Roycl Aeronautical Society and of the Institution of--ktomobile Engineers, February N, 19250 .— .-— ....
    [Show full text]
  • FINAL PROJECT “Design a Radial Engine”
    FINAL PROJECT “Design a Radial Engine” Project and Engineering Department Student: Maxim Tsankov Vasilev Tutors: Dr. Pedro Villanueva Roldan Dk. Pamplona, 27.07.2011 1 Contents I. Radial Engine ................................................................................................................................ 5 II. History of the Radial Engine ........................................................................................................... 7 III. Radial engines nowadays ......................................................................................................... 15 I. Kinematical and Dynamical Calculations ..................................................................................... 18 1. Ratio .............................................................................................................................................. 18 2. Angular velocity ............................................................................................................................ 18 3. Current Piston Stroke ................................................................................................................... 18 4. Area of the piston head: ............................................................................................................... 21 5. Different forces acting on the master-rod: .................................................................................. 21 II. Strength calculations of some of the major parts of the engine................................................
    [Show full text]
  • Master of Engineering Thesis Modelling a Novel Orbital Ic
    Department of Mechanical Engineering University of Canterbury Te Whare Wānanga o Waitaha Telephone: +64-3-366 7001 Private Bag 4800 Facsimile: +64-3-364 2078 Christchurch 8020, New Zealand Website: www.mech.canterbury.ac.nz MASTER OF ENGINEERING THESIS MODELLING A NOVEL ORBITAL IC ENGINE TO AID FURTHER DESIGN By Lindsay Muir BE (Hons) 31 August 2014 Requirements for the degree of MASTER OF ENGINEERING IN MECHANICAL ENGINEERING Approved by: Dr Dirk Pons, Project Supervisor 1 COPYRIGHT LINDSAY MUIR 24/10/2015 0 TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................ 11 1.1 Scenario ............................................................................................................. 11 1.2 Purpose .............................................................................................................. 13 1.3 Scope ................................................................................................................. 14 2 BACKGROUND .................................................................................................. 15 2.1 The Radial and Rotary engine .......................................................................... 15 2.1.1 History ............................................................................................................. 15 2.1.2 Multi-row radials .............................................................................................. 18 2.1.3 Diesel radials .................................................................................................
    [Show full text]
  • Wankel Engine
    R -1 it ' ..^ . A SURVEY OF ROTARY TYPE INTERNAL COMBUSTION 1 ENGINES WITH PARTICULAR EMPHASIS , ON THE N.S.U.-WANKEL ENGINE \ 1 J . by , '4 HIRIYUR VEERANNA CHANDRA SHJilKA i \ B. S., Mysore University, India, 1958 1 1 \ \ •1 A MASTER ' S REPORT submitted in partial fulfillment of the ; requirements for the degree • 1 MASTER OP SCIENCE Department of Mechanical Engineering KANSAS STATE UNIVERSITY :i 1 Manhattan, Kansas 1 1966 V 1 "J Approved hy: 1 OM,. a/ Hy^^^Oa^ y Major i^ofessor .1 LP TABLE OP CONTENTS ^ ^ ^-, NOMENCLATURE iii INTRODUCTION 1 REVIEW OP LITERATURE ....',. 3 Rotary Piston Engines .... $ Rotary Cylinder Engines 11 Vane- type Engines 12 'Cat-and-mouse' Engines 13 N.S.U.-WANKEL ENGINE 1^ Optimum Shape l8 Principle of Operation 21 Engine Cycle 23 First Prototype ..... 25 COMPARISON WITH RECIPROCATING ENGINE 26 Combustion 26 Port Area 26 P-V Diagram 2? Sealing System 30 Cooling 32 DESIGN OP N.S.U.-WAMEL ENGINE 32 Output 2>k- Swept Volume 35 Engine Geometry - .•' 37 CONCLUSIONS . i^o ACKNOWLEDGMENT [^1 REFERENCES |j_2 Ill NOMENCLATURE e = eccentricity G = center of gravity h = thickness ,. N = rotational speed Pme ~ inean effective pressure P = output r = pitch circle radius R = generating radius V^ = volume of the chamber i_ = compression ratio ^ = angle of obliquity P = angle described by the line passing through the point of contact of the meshing gears and the center of the cir- cular hole in the rotor, with reference to a fixed axis 9 = angle of inclination of the line joining the center of the stator and the centroid of the rotor to the x-axis ,' ..• ^ = leaning angle , INTRODUCTION The conventional reciprocating internal combustion engine suffers from several fundamental shortcomings.
    [Show full text]
  • Aircraft Propulsion C Fayette Taylor
    SMITHSONIAN ANNALS OF FLIGHT AIRCRAFT PROPULSION C FAYETTE TAYLOR %L~^» ^ 0 *.». "itfnm^t.P *7 "•SI if' 9 #s$j?M | _•*• *• r " 12 H' .—• K- ZZZT "^ '! « 1 OOKfc —•II • • ~ Ifrfil K. • ««• ••arTT ' ,^IfimmP\ IS T A Review of the Evolution of Aircraft Piston Engines Volume 1, Number 4 (End of Volume) NATIONAL AIR AND SPACE MUSEUM 0/\ SMITHSONIAN INSTITUTION SMITHSONIAN INSTITUTION NATIONAL AIR AND SPACE MUSEUM SMITHSONIAN ANNALS OF FLIGHT VOLUME 1 . NUMBER 4 . (END OF VOLUME) AIRCRAFT PROPULSION A Review of the Evolution 0£ Aircraft Piston Engines C. FAYETTE TAYLOR Professor of Automotive Engineering Emeritus Massachusetts Institute of Technology SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON • 1971 Smithsonian Annals of Flight Numbers 1-4 constitute volume one of Smithsonian Annals of Flight. Subsequent numbers will not bear a volume designation, which has been dropped. The following earlier numbers of Smithsonian Annals of Flight are available from the Superintendent of Documents as indicated below: 1. The First Nonstop Coast-to-Coast Flight and the Historic T-2 Airplane, by Louis S. Casey, 1964. 90 pages, 43 figures, appendix, bibliography. Price 60ff. 2. The First Airplane Diesel Engine: Packard Model DR-980 of 1928, by Robert B. Meyer. 1964. 48 pages, 37 figures, appendix, bibliography. Price 60^. 3. The Liberty Engine 1918-1942, by Philip S. Dickey. 1968. 110 pages, 20 figures, appendix, bibliography. Price 75jf. The following numbers are in press: 5. The Wright Brothers Engines and Their Design, by Leonard S. Hobbs. 6. Langley's Aero Engine of 1903, by Robert B. Meyer. 7. The Curtiss D-12 Aero Engine, by Hugo Byttebier.
    [Show full text]
  • Counterpoise Defined Final
    A WHITE PAPER DESCRIBING THE INTERNAL COMBUSTION ENGINE’S FINAL MODIFICATION THE COUNTERPOISE BI-RADIAL ENGINE Authored by Del Wolverton Chief Science Officer/Founder WolvertonBailey, Inc. SUMMARY This is the year, 2017, that we celebrate 140 years since Dr. Nikolas Otto patented the four-stroke internal combustion engine in 1877. His gasoline engine serves as the origin of the “Otto Cycle” which is used as the basis for seven internal combustion engine variants today. For purposes of this white paper, the four-cylinder Otto engine will be used as the “reference engine.” Since Dr. Otto’s engine was built around the origin of the four-stroke-cycle of the pistons, this allows us to have a piston per cycle. Many changes have taken place during the past century in the size and shape of the engine as designed for various uses, however, this original four-stroke cycle is still used even in the latest internal combustion engine, the Counterpoise Bi-Radial Engine. This discussion will first describe the “basis” Otto Cycle, providing a simple, “math-free” description of each of the four strokes in the cycle. Then, in order to help understand the operation, power, and weight advantages gained in the evolution, the author will take you through the existing variants, all the way to the latest internal combustion engine—complete with the final patented design, the WBI Counterpoise Bi-Radial Engine. CONTENTS Single-Piston of the Otto Cycle ..................................................................................................... 2 The Four
    [Show full text]
  • Variable Valve Timing - Wikipedia 8/28/20, 114 PM
    Variable valve timing - Wikipedia 8/28/20, 114 PM Variable valve timing In internal combustion engines, variable valve timing (VVT) is the process of altering the timing of a valve lift event, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems. Cylinder head of Honda K20Z3. This engine uses continuously variable Two-stroke engines use a power valve system to get similar timing for the inlet valves results to VVT. Contents Background theory Continuous versus discrete Cam phasing versus variable duration Typical effect of timing adjustments Challenges History Steam engines Aircraft Automotive Motorcycles Marine Diesel Automotive nomenclature Methods for implementing Variable Valve Control (VVC) Cam switching Cam phasing Oscillating cam Eccentric cam drive Three-dimensional cam lobe Two shaft combined cam lobe profile https://en.wikipedia.org/wiki/Variable_valve_timing Page 1 of 12 Variable valve timing - Wikipedia 8/28/20, 114 PM Coaxial two shaft combined cam lobe profile Helical camshaft Camless engines Hydraulic system See also References External links Background theory The valves within an internal combustion engine are used to control the flow of the intake and exhaust gases into and out of the combustion chamber. The timing, duration and lift of these valve events has a significant impact on engine performance. Without variable valve timing or variable valve lift, the valve timing is the same for all engine speeds and conditions, therefore compromises are necessary.[1] An engine equipped with a variable valve timing actuation system is freed from this constraint, allowing performance to be improved over the engine operating range.
    [Show full text]
  • 784. Combustion Variability and Uniqueness in Cylinders of a Large Power Radial Engine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Journal of Vibroengineering 784. Combustion variability and uniqueness in cylinders of a large power radial engine Michal G ęca 1, Miroslaw Wendeker 2, Grzegorz Litak 3 1, 2 Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Lublin University of Technology, Nadbystrzycka 36, PL-20-618 Lublin, Poland 3Department of Applied Mechanics Lublin University of Technology, Nadbystrzycka 36, PL-20-618 Lublin, Poland E-mail: [email protected] , [email protected] , [email protected] Phone: +4881 538 4573, fax: +4881 538 4233. (Received 4 February 2012; accepted 14 May 2012) Abstract. This paper analyzes variability and uniqueness of a combustion process in the spark ignition radial engine having nine cylinders. In the case of single cylinder disturbances, multifractal approach is proposed to identify faults in the measured cylinder pressure. For better clarity, the pressure cyclic response is illustrated by means of wavelet results. The examined engine was powered by an electronic fuel injection, giving the possibility of varying doses supplied to the individual cylinders. Keywords: spark ignition engine dynamics, cycle-to-cycle pressure oscillations, wavelets, non- linear vibrations. Introduction Radial piston engines were used in aviation from its early beginning. Despite extensive development of jet and turbine engines they are still competitive (low cost of purchase and maintenance). Radial piston engines have also a favorable power-to-weight ratio. This article considers the world's largest stellar engine. The power unit has been manufactured in Poland for over 70 years and originally is powered by carbureted system.
    [Show full text]
  • A-Cr-Ccp-802/Pf-001
    A-CR-CCP-802/PF-001 ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 2 EO M232.02 – IDENTIFY THE COMPONENTS OF PISTON- POWERED INTERNAL COMBUSTION ENGINES Total Time: 60 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery of this lesson are listed in the lesson specification located in A-CR-CCP- 802/PG-001, Chapter 4. Specific uses for said resources are identified throughout the Instructional Guide within the TP for which they are required. Review the lesson content and become familiar with the material prior to delivering the lesson. Create slides or handouts of Figures 12C-1 to 12C-3, and 12D-1, 12E-1 and 12F-1 respectively. Copy handouts of Figure 12C-4 for each cadet. PRE-LESSON ASSIGNMENT N/A. APPROACH An interactive lecture was chosen for TP1 to TP3 to introduce the components of internal combustion engines and give an overview of them. An in-class activity was chosen for TP4 as it is an interactive way to provoke thought and stimulate an interest among cadets. INTRODUCTION REVIEW N/A. OBJECTIVES By the end of this lesson the cadet shall be expected to identify the components of piston-powered internal combustion engines. IMPORTANCE It is important for cadets to learn about the components of piston-powered internal combustion engines so that they can develop an understanding of subsequent and related principles of aviation. 12-2-1 A-CR-CCP-802/PF-001 Teaching Point 1 Identify and Explain the Operations of the Major Components of a Piston-powered Engine Time: 25 min Method: Interactive Lecture MAJOR COMPONENTS OF A PISTON-POWERED ENGINE Show the cadets a slide or handout of the piston-powered engine in Figure 12C-1.
    [Show full text]
  • Modeling & Thermal Analysis of Radial Engine
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072 MODELING & THERMAL ANALYSIS OF RADIAL ENGINE V Ravindra Kumar1, P Siva Sankar2 R Lokanadham3 1 PG Scholar, Mechanical Engineering, Chadalawada Ramanamma Engineering College, Tirupati, Andhra Pradesh, India. 2 Assistant Professor, Mechanical Engineering, Chadalawada Ramanamma Engineering College, Tirupati, Andhra Pradesh, India. 3 Professor, Mechanical Engineering, Chadalawada Ramanamma Engineering College, Tirupati, Andhra Pradesh, India. ---------------------------------------------------------------------****--------------------------------------------------------------------- ABSTRACT: A reciprocating engine is a primary source of 1.2 APPLICATIONS: power generation in various mechanical applications from power generation to automobiles. To increase the speed of the Radial engines have several advantages for airplanes: engine and for more power transmission radial engines are used. Radial engine is a type of reciprocating internal They can produce a lot of power. A typical radial combustion engine in which five pistons are associated to the engine in a B-17 has nine cylinders, displaces 1,800 crank shaft along with connecting rod. Radial engines are cubic inches (29.5 liters) and produces 1,200 commonly used in aero craft, ships etc., horsepower. The main object of this project is to design the radial Radial engines have a relatively low maximum rpm engine in defined parameters and can simulate the stress, (rotations per minute) rate, so they can often drive shear, tensile loads, thermal analysis by using ANSYS Software. propellers without any sort of reduction gearing. This process is done for each and every main component. These Analysis process is done in every manufacturing Because all of the pistons are in the same plane, industries before assembling (Individual component Analysis).
    [Show full text]
  • The Counterpoise Bi-Radial Engine
    A WHITE PAPER DESCRIBING THE INTERNAL COMBUSTION ENGINE’S FINAL IMPROVEMENT THE COUNTERPOISE BI-RADIAL ENGINE Authored by Del Wolverton Chief Science Officer/Founder WolvertonBailey Innovations, Inc. SUMMARY This is the year that we celebrate 140 years since Dr. Nikolas Otto patented the four-stroke internal combustion engine in 1877. His gasoline engine serves as the origin of the “Otto Cycle” which is used as the basis for the six internal combustion engine variants today. For purposes of this white paper, the 4-cylinder Otto engine will be used as the “reference engine.” Since Dr. Otto’s engine was built around the origin of the 4-stroke-cycle of the pistons, this allows us to have a piston per cycle. Many changes have taken place during the past century in the size and shape of the engine as designed for various uses, however, this original 4-stroke cycle is still used in the latest internal combustion engine just patented in 2016. The discussion in this white paper will first describe the Otto Cycle, providing a simple, math- free description of each of the four strokes. Then, in order to help understand the operation, power, and weight advantages gained in the evolution, the author will then take you through the five existing variants, plus the newly patented latest and final design improvement—the Counterpoise Bi-Radial Engine. CONTENTS Single-Piston of the Otto Cycle ..................................................................................................... 2 The 4 Strokes ...............................................................................................................................
    [Show full text]
  • Radial Eng Presentation1409-5.Pdf
    BRINGING BRITISH COLUMBIA’S AVIATION PAST INTO THE FUTURE Canadian Museum of Flight MEMBERS DAY 2014 SPEAKERS CORNER How the radial aircraft engine works V. Bentley Hangar # 3 - 5333 216th Street, Langley, BC V2Y 2N3 Phone: 604 532 0035 Fax: 604 532 0056 Visit us on the web at: www.canadianflight.org Registered with Canada Customs and Revenue Agency as a Charitable Organization Tax Deductable Receipts available Pratt & Whitney R-2000 radial engine Canadian Museum of Flight Page 2 How the radial aircraft engine works. In the early days, automobile engines were modified for use in flying machines. The designs are: Inline, as in most car engines today – and in older aircraft engines (think DH Gipsy Major); Vee engines, such as pioneered by the Ford V-8 – and the Rolls-Royce Merlin; and Horizontally-opposed auto engines, think Porsche – and the modern Continental aero engines. Radial engines were not used in automobiles, although there were land and marine applications. The radial engine is a reciprocating type, internal combustion engine configuration in which the cylinders ‘radiate’ outward from a central crankcase like the spokes of a wheel. The radial configuration was very commonly used for aircraft engines before turbine engines became predominant. History C. M. Manly constructed a water-cooled five-cylinder radial engine in 1901, a conversion of one of Stephen Balzer’s rotary engines, for Langley’s Aerodrome aircraft. Manly’s engine produced 52 hp (39 kW) at 950 rpm. In 1903–1904 Jacob Ellehammer used his experience constructing motorcycles to build the world’s first air-cooled radial engine, a three-cylinder engine that he used as the basis for a more powerful five-cylinder model in 1907.
    [Show full text]