Bases Moléculaires De La Résistance Métabolique Au Néonicotinoïde Imidaclopride Chez Le Moustique Aedes Aegypti Muhammad Asam Riaz

Total Page:16

File Type:pdf, Size:1020Kb

Bases Moléculaires De La Résistance Métabolique Au Néonicotinoïde Imidaclopride Chez Le Moustique Aedes Aegypti Muhammad Asam Riaz Bases moléculaires de la résistance métabolique au néonicotinoïde imidaclopride chez le moustique Aedes aegypti Muhammad Asam Riaz To cite this version: Muhammad Asam Riaz. Bases moléculaires de la résistance métabolique au néonicotinoïde imidaclo- pride chez le moustique Aedes aegypti. Autre [q-bio.OT]. Université de Grenoble, 2011. Français. NNT : 2011GRENV057. tel-00646983 HAL Id: tel-00646983 https://tel.archives-ouvertes.fr/tel-00646983 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Biodiversité Ecologie Environnement Arrêté ministériel : 7 août 2006 Présentée par « Muhammad Asam Riaz» Thèse dirigée par « Stéphane Reynaud » et codirigée par « Jean-Philippe David » préparée au sein du Laboratoire d’Ecologie Alpine dans l'École Doctorale Chimie et Sciences du Vivant Bases moléculaires de la résistance métabolique au néonicotinoïde imidaclopride chez le moustique Aedes aegypti (Molecular basis of metabolic resistance to the neonicotinoid imidacloprid in Aedes aegypti) Thèse soutenue publiquement le « 18 Novembre 2011 », devant le jury composé de : Mr James Devillers Directeur CTIS, Rillieux la Pape, Rapporteur Mr Vincent Corbel Chargé de recherche à l’IRD/CREC, Cotonou Benin, Rapporteur Mme Gaëlle Le-Goff Chargé de recherche à l’INRA, Sophia Antipolis , Membre Mr Bruno Combourieu Professeur à l’Université Claude Bernard Lyon 1, Valence, Membre Mme Laurence Després Professeur à l’Universite de Grenoble , Grenoble, Membre Mr Patrick Ravanel Professeur à l’Un iversité de Grenoble, Président Dedication I dedicate this humble effort to my beloved parents, sisters and brothers, without their inspiration and help this ambition could have not been achieved in University of Grenoble, France. I Acknowledgement All praises and appreciations to the Almighty Allah SWT, the most merciful, who blessed me with good health and enabled me to complete this work. After spending four and half golden years of my life (from Master 2R to today) in the Laboratoire d’Ecologie Alpine (LECA), I would like to thank all those loving people who helped and encouraged me to complete this work and without them that was not possible to carry out. I wish to express my profound gratitude to my supervisors, Jean-Philippe David and Stephane Reynaud for their keen interest, scholastic guidance, precious suggestions, encouragement, patience, sympathetic attitude, constructive criticisms, humorous behavior and cold mindedness from the beginning to the end of the research work. I express my heartfelt indebtedness to you both for taking all cares and offering your valuable time without the discrimination of weekends. Away from the family, it was not always easy to keep the moral high and your help and support did not feel me stressed. The impression of your personalities will always remain engraved on my mind. You are absolutely the models for me. Thanks are also extended to Patrick Ravanel , apart from a big scientist and father of P3E, a good human. I shall never ever forget the toxicology course examination conducted by you. Really, that was a honour for me and I found myself fortunate that I have spent time and completed my PhD in your team. I am very grateful to all members of jury, James Devillers, Vincent Corbel, Gaëlle Le-Goff, Bruno Combourieu, Laurence Després and Patrick Ravanel, for accepting to evaluate my research work. It was pleasure for me to have you as my jury member. I would specially thank to the reporters James Devillers and Vincent Corbel that they have spared their time to read the thesis and timely submitted the reports to ecole doctorale. I also take the opportunity to express my deepest and sincere gratitude to Fabrice Chandre, Christophe Délye Laurence Després, Gaëlle Le-Goff and John A Casida who guided me and gave me different valuable suggestions in the Comité de Thèse and other informal meetings. I would like to present my heartiest thanks to Chantal Dauphin-Villemant , UPMC Paris. Chantal thanks very much for your help to carry out analytical experiments. A special words of thanks to our previous laboratory director Pierre Taberlet and current laboratory directrice Irène Till-Bottraud for accepting me as PhD student in the LECA and their kind of supports. II I would like to express my appreciation to my colleagues of office 219 particularly Dr. Rodolphe Poupardin and future Doctor Angélique San-Miguel . Rodolphe, I have not met so many people who are sincere and committed like you. All time that we have spent in Grenoble, and particularly in Liverpool and Lyon, was full of joys and learnings. It is really unforgettable for me and, no doubt, part of pleasant memories. Angel, your laughs, jokes, encouragement and the French vocabulary that you made me learned are the golden memories. I shall miss you both. I shall not forget my best colleagues Alexia Chandor-Proust for her sincerity, gentleness and all scientific knowledge that I have learned from her; Guillaume Tétreau for his cooperative nature and sense of humour; Ozgur Kilinc for his ever presence in laboratory and unbound help in every matter of life; Mickael Catinon for his metaphorical daily French; Catherine Fallecker, and Charlène Thedevuide my old lab fellows for their encouragement and moral support. I would like to thank Michel Tissut , ever happy and live person, I always enjoyed his funny comments; Lucile Sage , Muriel Raveton and Bello Mouhamdou for their gentleness and services to the P3E; Sylvie Veyrenc for her dynamic role in managing insectarium and chemical stocks; Thierry Gaude , a handy and tricky man of our laboratory; Olivier Lontin who was ever ready and happy to resolve every problem of computer; During the PhD, I got a chance to work in Liverpool School of Tropical Medicine (LSTM), where I was warmly welcomed. A special words of thanks to Hilary Ranson , Clare Strode , Christopher Jones , Evangelina Morou and all other members of LSTM. Thanks are also extended to all other Teams, Plate forms and LECA fellows: Matheiu Faure, Tarafa Mustafa, Isabelle, Aurelie Bonin, Christian Miquel, Carole Poillot, Delphine Rioux, Alice Valentini, Frédéric Laporte and new postdocral fellow Myriam Régent- Kloeckner and new PhD students and office fellows Sophie Prud’hommes and Claire Blondel, for their kind assistance and to Fredric Fuchon, my stagiaire and friend, I have spent very good time with him. Fred It was pleasure to know you and work with you Fred. I would not forget those people who have left LECA: Romain Blanc-Mathieu, Joëlle Clostre, Joëlle Patorux, Margot Paris and Thomas Bouchardy. I am very thankful to our lab secretaries Kim Pla and Florence Sagnimorte for their unbound cooperation in processing “Ordres de mission” and “Bon de commande”. Your role is really unforgettable for me. Kim and Florence thanks very much for your all help. III I also take this opportunity to express my deepest and sincere gratitude to Higher Education Commission (HEC) of Pakistan and Agence National de Recherche (ANR) of France for the Scholarship and research funding without which this study would have not been possible. I am also thankful to Vice Chancellor, University of Sargodha, Dr. M Ikram Choudhary and my teacher, Dean of Faculty of Agriculture, Dr. Muhammad Afzal for their encouragement and unlimited cooperation in extending my leave on simple demand without any hesitation and differentiation. With deepest emotion I would like to express my enormous appreciation and gratefulness to my beloved teacher Dr. Sohail Ahmed for his moral support, encouragement, prayers and rendering all possible guidance to plane my future. I express also my cordial feelings and affectionate love to my Pakistni friends, Sibt, MGM, Kakulala, Ramzan bhai, Ayesha bhabi, Samar bhai, Ather bhai, Tayyab bhai, Ashraf, Khan M Asif, Naeem, Farhan bhai, Kiran bhabi, Sumaira, Wasim shehzad, Taiyyaba Riaz, Ayesha Anjum, Arif bhai, Zahid, shahid and Bushra Naqvi and all other friends that I could not mention. Thanks a lot to all of them for their love and kindness, sharing my sadness and happiness, arranging different get together, playing cricket, football, squash and cards with me and their encouragement and generous help throughout the study period that we had been together in France. Finally, this acknowledgement will not be complete if I do not explicit my sincere thanks to my honourable parents, my sisters: Shahida Riaz and Asma Riaz and brothers: Afzal, Mohsin, Pasha, Sunny and Sherry for their inspiration, encouragement and endless love to complete my higher study. I will never forget the greatest love that you gave me from the day I was born till the day I die. IV Prologue Mosquitoes play a major role in the transmission of human diseases. Since the last decade, major diseases such as dengue fever and malaria are resurging in several regions of the world. Due to the absence of efficient vaccines, the main way to limit these diseases is by controlling mosquito populations with insecticides. However, mosquitoes have developed resistance mechanisms to the four main chemical insecticide families used for vector control (organochlorides, organophosphates, carbamates and pyrethroids). In this context, there is an urgent need to build up new vector control strategies and investigate the use of alternative insecticides for vector control. In this concern, the present work aims at evaluating the toxicity of the neonicotinoid insecticide imidacloprid and associated metabolic resistance mechanisms in the dengue vector Aedes aegypti.
Recommended publications
  • UGC - Major Research Project Final Report 2013 – 2017
    UGC - Major Research Project Final Report 2013 – 2017 42-558/2013(SR) dated 22.03.2013 “STUDIES ON THE BIODIVERSITY AND DISTRIBUTION OF TREE HOLE MOSQUITOES OF SOUTHERN INDIA” Submitted to UNIVERSITY GRANTS COMMISION BAHADURSHAH ZAFAR MARG NEW DELHI - 110 002 Submitted By Dr. A. JEBANESAN, M.Sc., M.Ed., PGDHE., Ph.D., Professor & Principal Investigator, Department of Zoology, Annamalai University, Annamalainagar - 608 002. Tamil Nadu, INDIA. INTRODUCTION Mosquitoes are dipteran insects and blood sucking flies pest of man. They have always given tough time to men as important carriers of various diseases. People fight globally against mosquitoes and mosquito borne diseases. Mosquito vectors transmit parasites responsible for diseases such as Malaria, Dengue Fever (DF), Chikungunya (CG), Filariasis, Yellow Fever and various forms of Encephalitis such as Japanese Encephalitis (JE), Eastern Equine Encephalitis, St. Louis Encephalitis, Western Equine Encephalitis, Venezuelan Equine Encephalitis, etc. In January 2016, the World Health Organization (WHO) said that the Zika virus was likely to spread throughout the majority of the America by the end of the year. Mosquitoes breed in permanent, semi-permanent and temporary water bodies viz., running water, human dwelling, cattle shed, cess pits, tree holes, rock holes, cess pools, containers and discarded materials. The larval stage is aquatic and mosquito larval habitats are varied, which starts from tree holes to ponds and lakes. Tree holes provide a unique specialized type of ecological habitat which is different from the usual breeding places of the other species of mosquitoes. Tree holes habitats (phytotelmata) are small natural containers formed by living or dead plant parts when rainwater is collected in bark depressions.
    [Show full text]
  • Mosquito Biodiversity (Diptera: Culicidae) in Auroville, Puducherry
    WHO collaborating Centre for Research and Training in Lymphatic filariasis and Integrated Vector Management. Mosquito Biodiversity (Diptera: Culicidae) in Auroville, Puducherry REPORT SUBMITTED TO THE AUROVILLE PUDUCHERRY BY ICMR-VECTOR CONTROL RESEARCH CENTRE PUDUCHERRY SEPTEMBER P a g e | 2 Acknowledgements We owe our deepest gratitude to Dr. Lucas Dengel, (Founder Executive Eco Pro, Auroville & Research Project Mentor) and Ms. Suryamayi Clarence Smith (Executive Co- founder of Auroville Research Platform) for extending support and facilitating smooth conduct of field survey in Auroville. We are grateful to the Auroville Working Committee for according permission to access various places within Auroville This work was submitted to the Pondicherry University, Puducherry in partial fulfillment for the requirement of degree of Master of Science in Public Health Entomology (M.Sc. in PHE) by Ms. P. Visa Shalini under the supervision of Dr A. N. Shriram, Scientist “C”, Division of Vector Biology & Control P a g e | 3 Introduction Mosquitoes are of great significance for their nuisance biting and their role in the transmission of several parasitic and viral diseases viz. malaria, lymphatic filariasis, dengue, zika, yellow fever, chikungunya, Japanese Encephalitis etc. The breeding habitat diversity determines mosquito abundance, resulting in the transmission of different pathogens (Adebote et al., 2008; Emidi et al., 2017). Only, 10% of the mosquito species recorded are efficient vectors of pathogens with considerable public health significance (Manguin and Boete 2011), that have been historically responsible for some of the worst epidemics mankind has witnessed. The principal vectors of diseases belong to three genera viz. Anopheles, Aedes and Culex, of which some mosquito species are highly and successful invasive in nature e.g.
    [Show full text]
  • Zika Virus: an Updated Review of Competent Or Naturally Infected Mosquitoes Yanouk Epelboin, Stanislas Talaga, Loïc Epelboin, Isabelle Dusfour
    Zika virus: An updated review of competent or naturally infected mosquitoes Yanouk Epelboin, Stanislas Talaga, Loïc Epelboin, Isabelle Dusfour To cite this version: Yanouk Epelboin, Stanislas Talaga, Loïc Epelboin, Isabelle Dusfour. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Neglected Tropical Diseases, Public Library of Science, 2017, 11 (11), pp.e0005933. 10.1371/journal.pntd.0005933. hal-01844517 HAL Id: hal-01844517 https://hal.archives-ouvertes.fr/hal-01844517 Submitted on 19 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW Zika virus: An updated review of competent or naturally infected mosquitoes Yanouk Epelboin1*, Stanislas Talaga1, Loïc Epelboin2,3, Isabelle Dusfour1 1 VectopoÃle Amazonien Emile Abonnenc, Vector Control and Adaptation Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana, France, 2 Infectious and Tropical Diseases Unit, Centre Hospitalier AndreÂe Rosemon, Cayenne, French Guiana, France, 3 Ecosystèmes amazoniens et pathologie tropicale (EPAT), EA 3593, UniversiteÂ
    [Show full text]
  • Insect Predators of Mosquitoes of Rice Fields: JEZS 2014; 2 (5): 97-103 © 2014 JEZS Portrayal of Indirect Interactions with Alternative Received: 14-07-2014
    Journal of Entomology and Zoology Studies 2014; 2 (5): 97-103 ISSN 2320-7078 Insect predators of mosquitoes of rice fields: JEZS 2014; 2 (5): 97-103 © 2014 JEZS portrayal of indirect interactions with alternative Received: 14-07-2014 Accepted: 25-08-2014 prey Malini Kundu Department of Zoology, The Malini Kundu, Dipendra Sharma, Shreya Brahma, Soujita Pramanik, University of Burdwan, Golapbag, Goutam K Saha, Gautam Aditya Burdwan 713104, India. Abstract Dipendra Sharma The present commentary highlights the likelihood of indirect interactions in rice fields and allied Department of Zoology, University of wetlands using the water bugs, odonate larvae and dytiscid beetles as insect predators of mosquito. The Calcutta, 35 Ballygunge Circular biomass and linkage density of the species were used as input to construct the network and estimate the Road, Kolkata 700019, India. opportunity of intraguild predation (IGP) and apparent competition (AC). It was evident that IGP increased as a function of insect predator body weight (r= + 0.907; P < 0. 05), while an increase in prey Shreya Brahma biomass decreased its involvement in AC (r = - 0.864; P < 0.05). The interaction between mosquito prey Department of Zoology, University of and the predators appears to be affected by the biomass and composition of the species assemblage. Calcutta, 35 Ballygunge Circular Assuming chances of IGP and AC, positive preference for mosquito by the insect predators seems to be Road, Kolkata 700019, India. an important criterion for effective biological control. Soujita Pramanik Keywords: Intraguild predation, Apparent competition, Biological control, mosquito, insect predators Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
    [Show full text]
  • Surveillance of Mosquito Vectors in Sana'a: Yemen
    International Journal of Mosquito Research 2019; 6(1): 124-131 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2019; 6(1): 124-131 Surveillance of mosquito vectors in Sana'a: © 2019 IJMR Received: 19-11-2018 Yemen Accepted: 23-12-2018 Abbas Al-Azab Abbas Al-Azab, Essam Shaalan and Saleh Al-Elmani Biological Science Department, Faculty of Science, Sana'a University, Yemen Abstract The mosquito fauna of Yemen is poorly studied and no modern taxonomic keys to mosquitoes of this Essam Shaalan country are found. This investigation was conducted to provide baseline data about mosquito vectors Zoology Department, Faculty of prevailing in Sana'a, north-west of Yemen. Immature stages of mosquitoes breeding in different aquatic Science, Aswan University, habitats were collected seasonally from nine locations in Sana'a. Results indicated that 2054 mosquito Aswan, Egypt larvae were collected by dipping method during 2015-2016, representing six culicine mosquito species belonging to 3 genera whilst no anopheline mosquito larvae were found. Depending on morphological Saleh Al-Elmani keys of the fourth instar larvae, such mosquito species were identified as Culiseta longiareolata (980 Plant Protection Department, larvae = 47.71%), Culex pipiens (559 larvae = 27.22%), Culex mattinglyi (252 larvae = 12.27%) Culex Faculty of Agriculture, Sana'a laticinctus (207 larvae = 10.08%), Culex (lutzia) tigripes (34 larvae = 1.67 %), and Aedes aegypti (22 University, Yemen larvae = 1.07%). Both Cs. longiareolata and Cx. pipiens were the most predominant species that found in all locations whilst both Ae. aegypti and Cx. (lutzia) tigripes were found in only one location, Sana'a city and Al-Haymah Ad Dakhiliyah respectively.
    [Show full text]
  • World Journal of Pharmaceutical Research Rajeswari Et Al
    World Journal of Pharmaceutical Research Rajeswari et al . World Journal of Pharmaceutical SJIF Impact Research Factor 7.523 Volume 6, Issue 9, 474-482. Research Article ISSN 2277– 7105 MOSQUITOE DIVERSITY IN ERODE DISTRICT, TAMIL NADU, INDIA A. Raja Rajeswari* and K. Nagarajan1 *Assistant Professor, 1Associate Professor and Head (Rtd), PG and Research Department of Zoology, Sri Vasavi College, Erode. ABSTRACT Article Received on 26 June 2017, A survey on mosquito diversity in Erode district was carried out and Revised on 16 July 2017, totally 5114 mosquitoes belonging to 7 genus (Anopheles, Aedes, Accepted on 06 Aug. 2017 DOI: 10.20959/wjpr20179-8828 Armigeres, Aedeomyia, Culex, Lutzia and Ochlerotatus) and 23 species were collected during the study period. Both indoor and outdoor adults *Corresponding Author were collected from human dwellings, cattle sheds and larvae were A. Raja Rajeswari collected from different aquatic habitats. The most dominant genus Assistant Professor, PG and collected was Culex 29.36%, followed by Anopheles 26.27% and the Research Department of genus Aedeomyia represented 0.15%. Aedesalbopictus was the Zoology, Sri Vasavi College, predominant species and represented by 42.23% of the total Erode. mosquitoes which was followed by Aedesaegypti 25.08% and the least was Culex mimulus 0.17%. Armigeres subalbatus, Aedeomyia catastica and Lutzia fuscana were the single species collected during the study period. KEYWORDS: Biodiversity, Anopheles, Aedes, Armigeres, Aedeomyia, Culex, Lutzia and Ochlerotatus. INTRODUCTION The term “BIODIVERSITY” is usually used as a synonym for “variety of life” and it is widely applied not only in scientific context but also in media and political discussions.
    [Show full text]
  • Mosquito Distribution and West Nile Virus Infection in Zoos and in Important Sites of Migratory and Resident Birds, Thailand
    AsianPacJTropDis 2012; 2(4): 268-272 268 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage:www.elsevier.com/locate/apjtd Document heading doi: 10.1016/S2222-1808(12)60059-0 2012 by the Asian Pacific Journal of Tropical Disease. All rights reserved. 襃 Mosquito distribution and West Nile virus infection in zoos and in important sites of migratory and resident birds, Thailand * Tanasak Changbunjong1 , Thekhawet Weluwanarak1, Namaoy Toawan1, Parut Suksai1, Poonyapat Sedwisai1, Tatiyanuch Chamsai1, Charoonluk Jirapattharasate1, Sivapong Sungpradit1, Yudthana Samung2, Parntep Ratanakorn1 1MonitoringandSurveillanceCenterforZoonoticDiseasesinWildlifeandExoticAnimals,FacultyofVeterinaryScience,MahidolUniversity,Nakorn Pathom,Thailand 2DepartmentofMedicalEntomology,FacultyofTropicalMedicine,MahidolUniversity,Bangkok,Thailand ARTICLE INFO ABSTRACT Objective: Articlehistory: To investigate the distribution of mosquito species in the zoos and in important sites ( ) Received 15 March 2012 Methods:of migratory and resident birds and evaluate West Nile virus WNV infection in mosquito species. 2009 Received in revised form 27 April 2012 Mosquitoes distribution investigation was carried out bimonthly from January Accepted 28 May 2012 to December 2010 in five areas of birds, Thailand by using Centers for Disease Control, light Available online 28 August 2012 traps, and gravid traps. Mosquitoes were identified, pooled into groups of up to 50 mosquitoes by species, places and time of collection and tResults:ested for WNV infection by viral isolation and reverse transcriptase polymerase chain reaction. A total of 66 597 mosquitoes comprising 26 8 sCulexpeciestritaeniorhynchus in genera were collectCulexed. Thvishnuie five most abCulexundansitienst mosquito sCulexpeciesquinquefasciatus collected were Keywords: (79 3 ) (8 2 ) (6 ) Anophelespeditaeniatus. % , . % , % , (3.3%) and (1.1%). All 1 736 mosquito pools were negative for viral isolation Mosquito Conclusions: and reverse transcriptase polymerase chain reaction.
    [Show full text]
  • Current Arboviral Threats and Their Potential Vectors in Thailand
    pathogens Review Current Arboviral Threats and Their Potential Vectors in Thailand Chadchalerm Raksakoon 1 and Rutcharin Potiwat 2,* 1 Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; [email protected] 2 Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected] Abstract: Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimi- cidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction. Keywords: emerging infectious diseases; arboviruses; vector; Aedes spp.; veterinary Citation: Raksakoon, C.; Potiwat, R. 1. Introduction Current Arboviral Threats and Their Arboviral diseases impact human and/or veterinary health in Thailand.
    [Show full text]
  • Predatory Habits of Lutzia (Metalutzia) Fuscana (Wiedmann) (Diptera: Culicidae) in the Arid Environments of Jodhpur, Western Rajasthan, India
    Arthropods, 2014, 3(1): 70-79 Article Predatory habits of Lutzia (Metalutzia) fuscana (Wiedmann) (Diptera: Culicidae) in the arid environments of Jodhpur, western Rajasthan, India Himmat Singh, Robin Marwal, Anusha Mishra, Karam Vir Singh Desert Medicine Research Centre, New Pali Road, Jodhpur, India -342005 E-mail: [email protected] Received 30 August 2013; Accepted 13 October 2013; Published online 1 March 2014 Abstract The stable breeding of Lutzia (Metalutzia) fuscana was recorded form different locations of Indian Desert the “Thar” for the first time. The species being predatory in its larval form was investigated for evaluation of its biological control aspect in the desert setup where breeding sites and prey species are limited. Though its predatory habit is established yet using it as biological controlling agent was not found promising due to untargeted approach due to unlimited outdoor breeding places in sub-humid climatic conditions in rest of India. Whereas in desert due to limited water sources, mosquito vectors share the available breeding niche this increases possibility of targeted biological control using predatory species. Laboratory experiments on predatory habit of Lutzia (Metalutzia) fuscana showed that it preferred Aedes aegypti larvae most (88.5%), Anopheles stephensi (47.5%) and Culex quinquefasciatus larvae (39.0%). Average consumption of daily larvae is 18.89 larvae/day. If colonized properly and released in controlled conditions they can be useful in controlling of socially protected and unattended breeding
    [Show full text]
  • Zika Virus: an Updated Review of Competent Or Naturally Infected Mosquitoes
    REVIEW Zika virus: An updated review of competent or naturally infected mosquitoes Yanouk Epelboin1*, Stanislas Talaga1, Loïc Epelboin2,3, Isabelle Dusfour1 1 VectopoÃle Amazonien Emile Abonnenc, Vector Control and Adaptation Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana, France, 2 Infectious and Tropical Diseases Unit, Centre Hospitalier AndreÂe Rosemon, Cayenne, French Guiana, France, 3 Ecosystèmes amazoniens et pathologie tropicale (EPAT), EA 3593, Universite de Guyane±Cayenne, French Guiana * [email protected] Abstract Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) that recently caused outbreaks in the Americas. Over the past 60 years, this virus has been observed circulating among Afri- a1111111111 can, Asian, and Pacific Island populations, but little attention has been paid by the scientific a1111111111 community until the discovery that large-scale urban ZIKV outbreaks were associated with a1111111111 a1111111111 neurological complications such as microcephaly and several other neurological malforma- a1111111111 tions in fetuses and newborns. This paper is a systematic review intended to list all mosquito species studied for ZIKV infection or for their vector competence. We discuss whether stud- ies on ZIKV vectors have brought enough evidence to formally exclude other mosquitoes than Aedes species (and particularly Aedes aegypti) to be ZIKV vectors. From 1952 to OPEN ACCESS August 15, 2017, ZIKV has been studied in 53 mosquito species, including 6 Anopheles, 26 Aedes, 11 Culex, 2 Lutzia, 3 Coquillettidia, 2 Mansonia, 2 Eretmapodites, and 1 Uranotae- Citation: Epelboin Y, Talaga S, Epelboin L, Dusfour I (2017) Zika virus: An updated review of nia. Among those, ZIKV was isolated from 16 different Aedes species.
    [Show full text]
  • Progress Report on “Survey and Management of Disease Carrier Insect (Mosquitoes- Anophales Sp., Culex Sp., Aedes Sp., Etc.,) B
    PROGRESS REPORT ON “SURVEY AND MANAGEMENT OF DISEASE CARRIER INSECT (MOSQUITOES- ANOPHALES SP., CULEX SP., AEDES SP., ETC.,) BY AQUATIC INSECT PREDATORS” (BT/IN/Indo-US/ Foldscope/39/2015 dt. 20/03/2018) Submitted to Government of India Ministry of Science and Technology Department of Biotechnology Block-2, 7th Floor C.G.O. Complex Lodi Road, New Delhi-110003 Submitted by Dr. M. Bhubaneshwari Devi Associate Professor, P.G. Department of Zoology, D. M. College of Science, Imphal Manipur 2018 1 Contents 1. Introduction 3-5 2. Material methods 5-7 3. Results a. Systematics 8-14 b. Life cycle Studies 15-17 c. Management (Biological Control) 18-20 4. Conclusion 20 5. Foldscopy up loaded in microcosmos 21-23 6. References 24-25 7. List of Publications Annexures I, II, III 8. List of Communicated papers Annexures IV 2 HALF YEARLY PROJECT REPORT INTRODUCTION Mankind has been plagued by mosquitoes as nuisances and as vectors of mosquito- borne diseases for centuries, resulting in inestimable economic losses and indeterminable human suffering. Mosquitoes transmit some of the deadliest diseases known to man malaria and yellow fever—as well as dengue, encephalitis, filariasis and a hundred or so other maladies. In spite of decades of mosquito control efforts throughout affected regions worldwide, this scourge has not left us and our present- day overpopulated, jet-linked world remains on the edge of resurgence and out- breaks of old and new mosquito-borne disease epidemics (Norbert et al., 2010, Shaalan and Canyon, 2009). The mosquitoes (family Culicidae) are at the centre of worldwide entomological research because of their importance as vectors of a wide range of debilitating viral and parasitic diseases affecting both humans and animals.
    [Show full text]
  • SYNTHESIS and PHYLOGENETIC COMPARATIVE ANALYSES of the CAUSES and CONSEQUENCES of KARYOTYPE EVOLUTION in ARTHROPODS by HEATH B
    SYNTHESIS AND PHYLOGENETIC COMPARATIVE ANALYSES OF THE CAUSES AND CONSEQUENCES OF KARYOTYPE EVOLUTION IN ARTHROPODS by HEATH BLACKMON Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Heath Blackmon 2015 All Rights Reserved ii Acknowledgements I owe a great debt of gratitude to my advisor professor Jeffery Demuth. The example that he has set has shaped the type of scientist that I strive to be. Jeff has given me tremendous intelectual freedom to develop my own research interests and has been a source of sage advice both scientific and personal. I also appreciate the guidance, insight, and encouragement of professors Esther Betrán, Paul Chippindale, John Fondon, and Matthew Fujita. I have been fortunate to have an extended group of collaborators including professors Doris Bachtrog, Nate Hardy, Mark Kirkpatrick, Laura Ross, and members of the Tree of Sex Consortium who have provided opportunities and encouragement over the last five years. Three chapters of this dissertation were the result of collaborative work. My collaborators on Chapter 1 were Laura Ross and Doris Bachtrog; both were involved in data collection and writing. My collaborators for Chapters 4 and 5 were Laura Ross (data collection, analysis, and writing) and Nate Hardy (tree inference and writing). I am also grateful for the group of graduate students that have helped me in this phase of my education. I was fortunate to share an office for four years with Eric Watson.
    [Show full text]