Probability and Random Processes

Total Page:16

File Type:pdf, Size:1020Kb

Probability and Random Processes Ramon van Handel Probability and Random Processes ORF 309/MAT 380 Lecture Notes Princeton University This version: February 22, 2016 Preface These lecture notes are intended for a one-semester undergraduate course in applied probability. Such a course has been taught at Princeton for many years by Erhan Çinlar. The choice of material in these notes was greatly inspired by Çinlar’s course, though my own biases regarding the material and presentation are inevitably reflected in the present incarnation. As always, some choices had to be made regarding what to present: • It should be emphasized that this course is not intended for a pure math- ematics audience, for whom an entirely different approach would be in- dicated. The course is taken by a diverse range of undergraduates in the sciences, engineering, and applied mathematics. For this reason, the focus is on probabilistic intuition rather than rigorous proofs, and the choice of material emphasizes exact computations rather than inequalities or asymp- totics. The main aim is to introduce an applied audience to a range of basic probabilistic notions and to quantitative probabilistic reasoning. • A principle I have tried to follow as much as possible is not to introduce any concept out of the blue, but rather to have a natural progression of topics. For example, every new distribution that is encountered is derived naturally from a probabilistic model, rather than being defined abstractly. My hope is that this helps students develop a feeling for the big picture and for the connections between the different topics. • The range of topics is quite large for a first course on probability, and the pace is rapid. The main missing topic is an introduction to martingales; I hope to add a chapter on this at the end at some point in the future. It is a fact of life that lecture notes are a perpetual construction zone. Surely errors remain to be fixed and presentation remains to be improved. Many thanks are due to all students who provided me with corrections in the past, and I will be grateful to continue to receive such feedback in the future. Princeton, January 2016 Contents 0 Introduction ............................................... 1 0.1 What is probability? . .1 0.2 Why do we need a mathematical theory? . .2 0.3 This course . .4 1 Basic Principles of Probability ............................. 5 1.1 Sample space . .5 1.2 Events . .6 1.3 Probability measure . .9 1.4 Probabilistic modelling . 12 1.5 Conditional probability . 16 1.6 Independent events . 19 1.7 Random variables . 23 1.8 Expectation and distributions . 26 1.9 Independence and conditioning . 31 2 Bernoulli Processes ........................................ 37 2.1 Counting successes and binomial distribution . 37 2.2 Arrival times and geometric distribution . 42 2.3 The law of large numbers . 47 2.4 From discrete to continuous arrivals. 56 3 Continuous Random Variables ............................. 63 3.1 Expectation and integrals . 63 3.2 Joint and conditional densities . 70 3.3 Independence . 74 4 Lifetimes and Reliability ................................... 77 4.1 Lifetimes . 77 4.2 Minima and maxima . 80 4.3 * Reliability . 85 X Contents 4.4 * A random process perspective . 89 5 Poisson Processes .......................................... 97 5.1 Counting processes and Poisson processes . 97 5.2 Superposition and thinning . 102 5.3 Nonhomogeneous Poisson processes . 110 6 Random Walks ............................................115 6.1 What is a random walk? . 115 6.2 Hitting times . 117 6.3 Gambler’s ruin . 124 6.4 Biased random walks . 127 7 Brownian Motion ..........................................135 7.1 The continuous time limit of a random walk . 135 7.2 Brownian motion and Gaussian distribution . 138 7.3 The central limit theorem . 144 7.4 Jointly Gaussian variables . 151 7.5 Sample paths of Brownian motion . 155 8 Branching Processes .......................................161 8.1 The Galton-Watson process . 161 8.2 Extinction probability . 163 9 Markov Chains ............................................169 9.1 Markov chains and transition probabilities . 169 9.2 Classification of states . 175 9.3 First step analysis . 180 9.4 Steady-state behavior . 183 9.5 The law of large numbers revisited . 191 0 Introduction 0.1 What is probability? Most simply stated, probability is the study of randomness. Randomness is of course everywhere around us—this statement surely needs no justification! One of the remarkable aspects of this subject is that it touches almost ev- ery area of the natural sciences, engineering, social sciences, and even pure mathematics. The following random examples are only a drop in the bucket. • Physics: quantities such as temperature and pressure arise as a direct con- sequence of the random motion of atoms and molecules. Quantum me- chanics tells us that the world is random at an even more basic level. • Biology and medicine: random mutations are the key driving force behind evolution, which has led to the amazing diversity of life that we see today. Random models are essential in understanding the spread of disease, both in a population (epidemics) or in the human body (cancer). • Chemistry: chemical reactions happen when molecules randomly meet. Random models of chemical kinetics are particularly important in systems with very low concentrations, such as biochemical reactions in a single cell. • Electrical engineering: noise is the universal bane of accurate transmission of information. The effect of random noise must be well understood in order to design reliable communication protocols that you use on a daily basis in your cell phones. The modelling of data, such as English text, using random models is a key ingredient in many data compression schemes. • Computer science: randomness is an important resource in the design of algorithms. In many situations, randomized algorithms provide the best known methods to solve hard problems. • Civil engineering: the design of buildings and structures that can reliably withstand unpredictable effects, such as vibrations, variable rainfall and wind, etc., requires one to take randomness into account. 2 0 Introduction • Finance and economics: stock and bond prices are inherently unpre- dictable; as such, random models form the basis for almost all work in the financial industry. The modelling of randomly occurring rare events forms the basis for all insurance policies, and for risk management in banks. • Sociology: random models provide basic understanding of the formation of social networks and of the nature of voting schemes, and form the basis for principled methodology for surveys and other data collection methods. • Statistics and machine learning: random models form the foundation for almost all of data science. The random nature of data must be well under- stood in order to draw reliable conclusions from large data sets. • Pure mathematics: probability theory is a mathematical field in its own right, but is also widely used in many problems throughout pure mathe- matics in areas such as combinatorics, analysis, and number theory. • ... (insert your favorite subject here) As a probabilist1, I find it fascinating that the same basic principles lie at the heart of such a diverse list of interesting phenomena: probability theory is the foundation that ties all these and innumerable other areas together. This should already be enough motivation in its own right to convince you (in case you were not already convinced) that we are on to an exciting topic. Before we can have a meaningful discussion, we should at least have a basic idea of what randomness means. Let us first consider the opposite notion. Suppose I throw a ball many times at exactly the same angle and speed and under exactly the same conditions. Every time we run this experiment, the ball will land in exactly the same place: we can predict exactly what is going to happen. This is an example of a deterministic system. Randomness is the opposite of determinism: a random phenomenon is one that can yield different outcomes in repeated experiments, even if we use exactly the same conditions in each experiment. For example, if we flip a coin, we know in advance that it will either come up heads or tails, but we cannot predict before any given experiment which of these outcomes will occur. Our challenge is to develop a framework to reason precisely about random phenomena. 0.2 Why do we need a mathematical theory? It is not at all obvious at first sight that it is possible to develop a rigorous the- ory of probability: how can one make precise predictions about a phenomenon whose behavior is inherently unpredictable? This philosophical hurdle ham- pered the development of probability theory for many centuries. 1 Official definition from the Oxford English Dictionary: “probabilist, n. An expert or specialist in the mathematical theory of probability.” 0.2 Why do we need a mathematical theory? 3 To illustrate the pitfalls of an intuitive approach to probability, let us con- sider a seemingly plausible definition. You probably think of the probability that an event E happens as the fraction of outcomes in which E occurs (this is not entirely unreasonable). We could posit this as a tentative definition Number of outcomes where E occurs Probability of E = . Number of all possible outcomes This sort of intuitive definition may look at first sight like it matches your experience. However, it is totally meaningless: we can easily use it to come to entirely different conclusions. Example 0.2.1. Suppose that we flip two coins. What is the probability that we obtain one heads (H) and one tails (T )? • Solution 1: The possible outcomes are HH,HT,TH,TT . The outcomes where we have one heads and one tails are HT,TH. Hence, 2 1 Probability of one heads and one tails = = . 4 2 • Solution 2: The possible outcomes are two heads, one heads and one tails, two tails. Only one of these outcomes has one heads and one tails.
Recommended publications
  • Measure-Theoretic Probability I
    Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go.
    [Show full text]
  • Foundations of Probability Theory and Statistical Mechanics
    Chapter 6 Foundations of Probability Theory and Statistical Mechanics EDWIN T. JAYNES Department of Physics, Washington University St. Louis, Missouri 1. What Makes Theories Grow? Scientific theories are invented and cared for by people; and so have the properties of any other human institution - vigorous growth when all the factors are right; stagnation, decadence, and even retrograde progress when they are not. And the factors that determine which it will be are seldom the ones (such as the state of experimental or mathe­ matical techniques) that one might at first expect. Among factors that have seemed, historically, to be more important are practical considera­ tions, accidents of birth or personality of individual people; and above all, the general philosophical climate in which the scientist lives, which determines whether efforts in a certain direction will be approved or deprecated by the scientific community as a whole. However much the" pure" scientist may deplore it, the fact remains that military or engineering applications of science have, over and over again, provided the impetus without which a field would have remained stagnant. We know, for example, that ARCHIMEDES' work in mechanics was at the forefront of efforts to defend Syracuse against the Romans; and that RUMFORD'S experiments which led eventually to the first law of thermodynamics were performed in the course of boring cannon. The development of microwave theory and techniques during World War II, and the present high level of activity in plasma physics are more recent examples of this kind of interaction; and it is clear that the past decade of unprecedented advances in solid-state physics is not entirely unrelated to commercial applications, particularly in electronics.
    [Show full text]
  • Creating Modern Probability. Its Mathematics, Physics and Philosophy in Historical Perspective
    HM 23 REVIEWS 203 The reviewer hopes this book will be widely read and enjoyed, and that it will be followed by other volumes telling even more of the fascinating story of Soviet mathematics. It should also be followed in a few years by an update, so that we can know if this great accumulation of talent will have survived the economic and political crisis that is just now robbing it of many of its most brilliant stars (see the article, ``To guard the future of Soviet mathematics,'' by A. M. Vershik, O. Ya. Viro, and L. A. Bokut' in Vol. 14 (1992) of The Mathematical Intelligencer). Creating Modern Probability. Its Mathematics, Physics and Philosophy in Historical Perspective. By Jan von Plato. Cambridge/New York/Melbourne (Cambridge Univ. Press). 1994. 323 pp. View metadata, citation and similar papers at core.ac.uk brought to you by CORE Reviewed by THOMAS HOCHKIRCHEN* provided by Elsevier - Publisher Connector Fachbereich Mathematik, Bergische UniversitaÈt Wuppertal, 42097 Wuppertal, Germany Aside from the role probabilistic concepts play in modern science, the history of the axiomatic foundation of probability theory is interesting from at least two more points of view. Probability as it is understood nowadays, probability in the sense of Kolmogorov (see [3]), is not easy to grasp, since the de®nition of probability as a normalized measure on a s-algebra of ``events'' is not a very obvious one. Furthermore, the discussion of different concepts of probability might help in under- standing the philosophy and role of ``applied mathematics.'' So the exploration of the creation of axiomatic probability should be interesting not only for historians of science but also for people concerned with didactics of mathematics and for those concerned with philosophical questions.
    [Show full text]
  • Bayes and the Law
    Bayes and the Law Norman Fenton, Martin Neil and Daniel Berger [email protected] January 2016 This is a pre-publication version of the following article: Fenton N.E, Neil M, Berger D, “Bayes and the Law”, Annual Review of Statistics and Its Application, Volume 3, 2016, doi: 10.1146/annurev-statistics-041715-033428 Posted with permission from the Annual Review of Statistics and Its Application, Volume 3 (c) 2016 by Annual Reviews, http://www.annualreviews.org. Abstract Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in the law and explains the main reasons for its lack of impact on legal practice. These include misconceptions by the legal community about Bayes’ theorem, over-reliance on the use of the likelihood ratio and the lack of adoption of modern computational methods. We argue that Bayesian Networks (BNs), which automatically produce the necessary Bayesian calculations, provide an opportunity to address most concerns about using Bayes in the law. Keywords: Bayes, Bayesian networks, statistics in court, legal arguments 1 1 Introduction The use of statistics in legal proceedings (both criminal and civil) has a long, but not terribly well distinguished, history that has been very well documented in (Finkelstein, 2009; Gastwirth, 2000; Kadane, 2008; Koehler, 1992; Vosk and Emery, 2014).
    [Show full text]
  • Probability and Statistics Lecture Notes
    Probability and Statistics Lecture Notes Antonio Jiménez-Martínez Chapter 1 Probability spaces In this chapter we introduce the theoretical structures that will allow us to assign proba- bilities in a wide range of probability problems. 1.1. Examples of random phenomena Science attempts to formulate general laws on the basis of observation and experiment. The simplest and most used scheme of such laws is: if a set of conditions B is satisfied =) event A occurs. Examples of such laws are the law of gravity, the law of conservation of mass, and many other instances in chemistry, physics, biology... If event A occurs inevitably whenever the set of conditions B is satisfied, we say that A is certain or sure (under the set of conditions B). If A can never occur whenever B is satisfied, we say that A is impossible (under the set of conditions B). If A may or may not occur whenever B is satisfied, then A is said to be a random phenomenon. Random phenomena is our subject matter. Unlike certain and impossible events, the presence of randomness implies that the set of conditions B do not reflect all the necessary and sufficient conditions for the event A to occur. It might seem them impossible to make any worthwhile statements about random phenomena. However, experience has shown that many random phenomena exhibit a statistical regularity that makes them subject to study. For such random phenomena it is possible to estimate the chance of occurrence of the random event. This estimate can be obtained from laws, called probabilistic or stochastic, with the form: if a set of conditions B is satisfied event A occurs m times =) repeatedly n times out of the n repetitions.
    [Show full text]
  • Estimating the Accuracy of Jury Verdicts
    Institute for Policy Research Northwestern University Working Paper Series WP-06-05 Estimating the Accuracy of Jury Verdicts Bruce D. Spencer Faculty Fellow, Institute for Policy Research Professor of Statistics Northwestern University Version date: April 17, 2006; rev. May 4, 2007 Forthcoming in Journal of Empirical Legal Studies 2040 Sheridan Rd. ! Evanston, IL 60208-4100 ! Tel: 847-491-3395 Fax: 847-491-9916 www.northwestern.edu/ipr, ! [email protected] Abstract Average accuracy of jury verdicts for a set of cases can be studied empirically and systematically even when the correct verdict cannot be known. The key is to obtain a second rating of the verdict, for example the judge’s, as in the recent study of criminal cases in the U.S. by the National Center for State Courts (NCSC). That study, like the famous Kalven-Zeisel study, showed only modest judge-jury agreement. Simple estimates of jury accuracy can be developed from the judge-jury agreement rate; the judge’s verdict is not taken as the gold standard. Although the estimates of accuracy are subject to error, under plausible conditions they tend to overestimate the average accuracy of jury verdicts. The jury verdict was estimated to be accurate in no more than 87% of the NCSC cases (which, however, should not be regarded as a representative sample with respect to jury accuracy). More refined estimates, including false conviction and false acquittal rates, are developed with models using stronger assumptions. For example, the conditional probability that the jury incorrectly convicts given that the defendant truly was not guilty (a “type I error”) was estimated at 0.25, with an estimated standard error (s.e.) of 0.07, the conditional probability that a jury incorrectly acquits given that the defendant truly was guilty (“type II error”) was estimated at 0.14 (s.e.
    [Show full text]
  • There Is No Pure Empirical Reasoning
    There Is No Pure Empirical Reasoning 1. Empiricism and the Question of Empirical Reasons Empiricism may be defined as the view there is no a priori justification for any synthetic claim. Critics object that empiricism cannot account for all the kinds of knowledge we seem to possess, such as moral knowledge, metaphysical knowledge, mathematical knowledge, and modal knowledge.1 In some cases, empiricists try to account for these types of knowledge; in other cases, they shrug off the objections, happily concluding, for example, that there is no moral knowledge, or that there is no metaphysical knowledge.2 But empiricism cannot shrug off just any type of knowledge; to be minimally plausible, empiricism must, for example, at least be able to account for paradigm instances of empirical knowledge, including especially scientific knowledge. Empirical knowledge can be divided into three categories: (a) knowledge by direct observation; (b) knowledge that is deductively inferred from observations; and (c) knowledge that is non-deductively inferred from observations, including knowledge arrived at by induction and inference to the best explanation. Category (c) includes all scientific knowledge. This category is of particular import to empiricists, many of whom take scientific knowledge as a sort of paradigm for knowledge in general; indeed, this forms a central source of motivation for empiricism.3 Thus, if there is any kind of knowledge that empiricists need to be able to account for, it is knowledge of type (c). I use the term “empirical reasoning” to refer to the reasoning involved in acquiring this type of knowledge – that is, to any instance of reasoning in which (i) the premises are justified directly by observation, (ii) the reasoning is non- deductive, and (iii) the reasoning provides adequate justification for the conclusion.
    [Show full text]
  • Randomized Algorithms Week 1: Probability Concepts
    600.664: Randomized Algorithms Professor: Rao Kosaraju Johns Hopkins University Scribe: Your Name Randomized Algorithms Week 1: Probability Concepts Rao Kosaraju 1.1 Motivation for Randomized Algorithms In a randomized algorithm you can toss a fair coin as a step of computation. Alternatively a bit taking values of 0 and 1 with equal probabilities can be chosen in a single step. More generally, in a single step an element out of n elements can be chosen with equal probalities (uniformly at random). In such a setting, our goal can be to design an algorithm that minimizes run time. Randomized algorithms are often advantageous for several reasons. They may be faster than deterministic algorithms. They may also be simpler. In addition, there are problems that can be solved with randomization for which we cannot design efficient deterministic algorithms directly. In some of those situations, we can design attractive deterministic algoirthms by first designing randomized algorithms and then converting them into deter- ministic algorithms by applying standard derandomization techniques. Deterministic Algorithm: Worst case running time, i.e. the number of steps the algo- rithm takes on the worst input of length n. Randomized Algorithm: 1) Expected number of steps the algorithm takes on the worst input of length n. 2) w.h.p. bounds. As an example of a randomized algorithm, we now present the classic quicksort algorithm and derive its performance later on in the chapter. We are given a set S of n distinct elements and we want to sort them. Below is the randomized quicksort algorithm. Algorithm RandQuickSort(S = fa1; a2; ··· ; ang If jSj ≤ 1 then output S; else: Choose a pivot element ai uniformly at random (u.a.r.) from S Split the set S into two subsets S1 = fajjaj < aig and S2 = fajjaj > aig by comparing each aj with the chosen ai Recurse on sets S1 and S2 Output the sorted set S1 then ai and then sorted S2.
    [Show full text]
  • Partnership As Experimentation: Business Organization and Survival in Egypt, 1910–1949
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Discussion Papers Economic Growth Center 5-1-2017 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç Timothy Guinnane Follow this and additional works at: https://elischolar.library.yale.edu/egcenter-discussion-paper-series Recommended Citation Artunç, Cihan and Guinnane, Timothy, "Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949" (2017). Discussion Papers. 1065. https://elischolar.library.yale.edu/egcenter-discussion-paper-series/1065 This Discussion Paper is brought to you for free and open access by the Economic Growth Center at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208269 New Haven, CT 06520-8269 http://www.econ.yale.edu/~egcenter Economic Growth Center Discussion Paper No. 1057 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç University of Arizona Timothy W. Guinnane Yale University Notes: Center discussion papers are preliminary materials circulated to stimulate discussion and critical comments. This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: https://ssrn.com/abstract=2973315 Partnership as Experimentation: Business Organization and Survival in Egypt, 1910–1949 Cihan Artunç⇤ Timothy W. Guinnane† This Draft: May 2017 Abstract The relationship between legal forms of firm organization and economic develop- ment remains poorly understood. Recent research disputes the view that the joint-stock corporation played a crucial role in historical economic development, but retains the view that the costless firm dissolution implicit in non-corporate forms is detrimental to investment.
    [Show full text]
  • 5. the Student T Distribution
    Virtual Laboratories > 4. Special Distributions > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5. The Student t Distribution In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a standardized version of the sample mean when the underlying distribution is normal. The Probability Density Function Suppose that Z has the standard normal distribution, V has the chi-squared distribution with n degrees of freedom, and that Z and V are independent. Let Z T= √V/n In the following exercise, you will show that T has probability density function given by −(n +1) /2 Γ((n + 1) / 2) t2 f(t)= 1 + , t∈ℝ ( n ) √n π Γ(n / 2) 1. Show that T has the given probability density function by using the following steps. n a. Show first that the conditional distribution of T given V=v is normal with mean 0 a nd variance v . b. Use (a) to find the joint probability density function of (T,V). c. Integrate the joint probability density function in (b) with respect to v to find the probability density function of T. The distribution of T is known as the Student t distribution with n degree of freedom. The distribution is well defined for any n > 0, but in practice, only positive integer values of n are of interest. This distribution was first studied by William Gosset, who published under the pseudonym Student. In addition to supplying the proof, Exercise 1 provides a good way of thinking of the t distribution: the t distribution arises when the variance of a mean 0 normal distribution is randomized in a certain way.
    [Show full text]
  • A Model of Gene Expression Based on Random Dynamical Systems Reveals Modularity Properties of Gene Regulatory Networks†
    A Model of Gene Expression Based on Random Dynamical Systems Reveals Modularity Properties of Gene Regulatory Networks† Fernando Antoneli1,4,*, Renata C. Ferreira3, Marcelo R. S. Briones2,4 1 Departmento de Informática em Saúde, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brasil 2 Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brasil 3 College of Medicine, Pennsylvania State University (Hershey), PA, USA 4 Laboratório de Genômica Evolutiva e Biocomplexidade, EPM, UNIFESP, Ed. Pesquisas II, Rua Pedro de Toledo 669, CEP 04039-032, São Paulo, Brasil Abstract. Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]