Formation of the Cloud: History, Metaphor, and Materiality Trevor D Croker

Total Page:16

File Type:pdf, Size:1020Kb

Formation of the Cloud: History, Metaphor, and Materiality Trevor D Croker Formation of the Cloud: History, Metaphor, and Materiality Trevor D Croker Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Science and Technology Studies Janet Abbate, Chair Daniel Breslau Saul Halfon Richard Hirsh November 14, 2019 Blacksburg, Virginia Keywords: cloud computing, material culture, infrastructure, internet studies Formation of the Cloud: History, Metaphor, and Materiality Trevor D Croker Abstract In this dissertation, I look at the history of cloud computing to demonstrate the entanglement of history, metaphor, and materiality. In telling this story, I argue that metaphors play a powerful role in how we imagine, construct, and maintain our technological futures. The cloud, as a metaphor in computing, works to simplify complexities in distributed networking infrastructures. The language and imagery of the cloud has been used as a tool that helps cloud providers shift public focus away from potentially important regulatory, environmental, and social questions while constructing a new computing marketplace. To address these topics, I contextualize the history of the cloud by looking back at the stories of utility computing (1960s-70s) and ubiquitous computing (1980s-1990s). These visions provide an alternative narrative about the design and regulation of new technological systems. Drawing upon these older metaphors of computing, I describe the early history of the cloud (1990-2008) in order to explore how this new vision of computing was imagined. I suggest that the metaphor of the cloud was not a historical inevitability. Rather, I argue that the social- construction of metaphors in computing can play a significant role in how the public thinks about, develops, and uses new technologies. In this research, I explore how the metaphor of the cloud underplays the impact of emerging large-scale computing infrastructures while at the same time slowly transforming traditional ownership-models in digital communications. Throughout the dissertation, I focus on the role of materiality in shaping digital technologies. I look at how the development of the cloud is tied to the establishment of cloud data centers and the deployment of global submarine data cables. Furthermore, I look at the materiality of the cloud by examining its impact on a local community (Los Angeles, CA). Throughout this research, I argue that the metaphor of the cloud often hides deeper socio-technical complexities. Both the materials and metaphor of the cloud work to make the system invisible. By looking at the material impact of the cloud, I demonstrate how these larger economic, social, and political realities are entangled in the story and metaphor of the cloud. Formation of the Cloud: History, Metaphor, and Materiality Trevor D Croker General Audience Abstract This dissertation tells the story of cloud computing by looking at the history of the cloud and then discussing the social and political implications of this history. I start by arguing that the cloud is connected to earlier visions of computing (specifically, utility computing and ubiquitous computing). By referencing these older histories, I argue that much of what we currently understand as cloud computing is actually connected to earlier debates and efforts to shape a computing future. Using the history of computing, I demonstrate the role that metaphor plays in the development of a technology. Using these earlier histories, I explain how cloud computing was coined in the 1990s and eventually became a dominant vision of computing in the late 2000s. Much of the research addresses how the metaphor of the cloud is used, the initial reaction to the idea of the cloud, and how the creation of the cloud did (or did not) borrow from older visions of computing. This research looks at which people use the cloud, how the cloud is marketed to different groups, and the challenges of conceptualizing this new distributed computing network. This dissertation gives particular weight to the materiality of the cloud. My research focuses on the cloud’s impact on data centers and submarine communication data cables. Additionally, I look at the impact of the cloud on a local community (Los Angeles, CA). Throughout this research, I argue that the metaphor of the cloud often hides deeper complexities. By looking at the material impact of the cloud, I demonstrate how larger economic, social, and political realities are entangled in the story and metaphor of the cloud. Dedication For Berenice Escalera. Thank you for walking by my side on this journey. iv Acknowledgements I owe many thanks to all of the people that offered their support, time, and energy as I completed this project. To all of my colleagues at the Department of Science, Technology, and Society at Virginia Tech, I am deeply grateful for the welcoming environment that you fostered and maintained. To my fellow classmates and professors, my education is richer because of your kind spirts. I wish to send a special thank you to my committee that helped foster my research and sharpen my arguments. In particular, my advisor Janet Abbate was a true supporter of my project and provided invaluable feedback and insight into the development of the dissertation and my own intellectual development. My committee – Daniel Breslau, Saul Halfon, Richard Hirsh – were not only a joy to work with on this project but were advocates throughout my entire graduate career. Finally, I want to sincerely thank my family for their support. Your love means everything. v Table of Contents Abstract……………………………………………………………………………………………ii General Audience Abstract……………………………………………………………………….iii Dedication………………………………………………………………………………………...iv Acknowledgements………………………………………………………………………………..v Table of Contents…………………………………………………………………………………vi Introduction………………………………………………………………………………………..1 Chapter 1…………………………………………………………………………………………10 Chapter 2…………………………………………………………………………………………33 Chapter 3…………………………………………………………………………………………48 Chapter 4…………………………………………………………………………………………65 Chapter 5…………………………………………………………………………………………85 Conclusion…………………………………………………….…………………………..……110 vi Introduction The Formation of a Cloud The Formation of the Cloud is a story about the creation of a new arrangement of computing technologies shaped upon much older visions of computing. This arrangement is called “cloud computing” and is currently the primary growth-area in contemporary networked computing. “The cloud” is a defining feature of the modern web and is the backbone for much of our digital infrastructure. In the majority of public accounts, the story of the cloud is framed as a new type of computing introduced in August 2006. Since 2006, nearly all of the web tech giants have shifted their platforms, users, and business models towards the development and growth of this new vision of computing. The development of the cloud, as presented, reads as the natural evolution of a new technology. This dissertation attempts to disrupt that deterministic narrative by exploring the history of cloud computing. Contrary to the dominant perception, the idea of the cloud was not invented in 2006. Rather, the notion of the cloud was formed over many decades from multiple visions of computing. These visions of computing are multiple, varied, and often at odds with one another. Two visions of computing in particular, utility computing and ubiquitous computing, have deeply shaped how the cloud is envisioned. Understanding the cloud today requires that we delve into these older histories of computing to see the roots of the cloud’s story. In addition to the historical unearthing of the cloud, this dissertation also seeks to unpack the cloud by looking at the role of metaphor. The metaphor of the cloud has been, and continues to be, a persistent literary tool in maintaining control over these new technologies. Metaphors are not simply decoration; they are ways of structuring meaning and giving order to systems. Metaphors can hide as much as they reveal. A critical account of the cloud needs to challenge the ease with which we have adopted the metaphor of the cloud. Likewise, the metaphor of the cloud needs to be set against the history of the idea. Often the adoption of a metaphor is uneven; parts of a technology’s history are ignored or overlooked. By reintroducing previous metaphors of computing into our current discussion of the cloud, we can start to reconcile historical imaginings with contemporary frameworks. The following chapters attempt to pull apart the cloud by looking at the material underpinnings of this new technological system. Underneath the metaphor are material bits that have been spread across the globe. The cloud lives inside data centers, in the cables that deliver information under our feet, and in the devices we carry. These are not immaterial objects; they are often massive infrastructure projects which carry a large amount of technological momentum. Slowly, new networked technologies are becoming enmeshed in, and dependent upon, this new material arrangement. This arrangement raises new social, political, and economic questions as broader society becomes more dependent upon this new era of the cloud. Any attempt to question the values embedded in these systems requires us to look at the actual materials of the cloud. Each story of the cloud is placed within the broader framework of Science and Technology Studies (STS). STS has a complex history, but one of the prevailing
Recommended publications
  • “Where the Internet Lives” Data Centers As Cloud Infrastructure
    C HAPTER 3 “Where the Internet Lives” Data Centers as Cloud Infrastructure JN OEN IFER H LT AND PATRICK VONDERAU mblazoned with the headline “Transparency,” Google released dozens of Einterior and exterior glossy images of their data centers on the company’s website in 2012. Inviting the public to “come inside” and “see where the In- ternet lives,” Google proudly announced they would reveal “what we’re made of— inside and out” by offering virtual tours through photo galleries of the tech- nology, the people, and the places making up their data centers.1 Google’s tours showed the world a glimpse of these structures with a series of photographs showcasing “the physical Internet,” as the site characterized it. The pictures consisted mainly of slick, artful images of buildings, wires, pipes, servers, and dedicated workers who populate the centers. Apple has also put the infrastructure behind its cloud services on display for the digital audience by featuring a host of infographics, statistics, and polished inside views of the company’s “environmentally responsible” data center fa- cilities on its website.2 Facebook, in turn, features extensive photo and news coverage of its global physical infrastructure on dedicated Facebook pages, while Microsoft presents guided video tours of their server farms for free download on its corporate website.3 Even smaller data centers like those owned by Eu- ropean Internet service provider Bahnhof AB, located in Sweden, are increas- ingly on digital exhibit, with their corporate parents offering various images of server racks, cooling and power technology, or even their meeting rooms, Copyright © ${Date}.
    [Show full text]
  • Google's Hyperscale Data Centres and Infrastructure Ecosystem in Europe
    GOOGLE’S HYPERSCALE DATA CENTRES AND INFRASTRUCTURE ECOSYSTEM IN EUROPE Economic impact study CLIENT: GOOGLE SEPTEMBER 2019 AUTHORS Dr Bruno Basalisco, Managing economist, Head of Digital Economy service Martin Bo Westh Hansen, Managing economist, Head of Energy & Climate service Tuomas Haanperä, Managing economist Erik Dahlberg, Senior economist Morten May Hansen, Economist Joshua Brown, Analyst Laurids Leo Münier, Analyst 0 Malthe Faber Laursen, Analyst Helge Sigurd Næss-Schmidt, Partner EXECUTIVE SUMMARY Digital transformation is a defining challenge and opportunity for the European economy, provid- ing the means to reinvent and improve how firms, consumers, governments, and citizens interact and do business with each other. European consumers, firms, and society stand to benefit from the resulting innovative products, processes, services, and business models – contributing to EU productivity. To maximise these benefits, it is key that the private and public sector can rely on an advanced and efficient cloud value chain. Considerable literature exists on cloud solutions and their transformative impact across the econ- omy. This report contributes by focusing on the analysis of the cloud value chain, taking Google as a relevant case study. It assesses the economic impact of the Google European hyperscale data cen- tres and related infrastructures which, behind the scenes, underpin online services such as cloud solutions. Thus, the report is an applied analysis of these infrastructure layers “above the cloud” (upstream inputs to deliver cloud solutions) and quantifies Google’s European economic contribu- tion associated with these activities. Double-clicking the cloud Services, such as Google Cloud, are a key example of a set of solutions that can serve a variety of Eu- ropean business needs and thus support economic productivity.
    [Show full text]
  • Security Distributed and Networking Systems (507 Pages)
    Security in ................................ i Distri buted and /Networking.. .. Systems, . .. .... SERIES IN COMPUTER AND NETWORK SECURITY Series Editors: Yi Pan (Georgia State Univ., USA) and Yang Xiao (Univ. of Alabama, USA) Published: Vol. 1: Security in Distributed and Networking Systems eds. Xiao Yang et al. Forthcoming: Vol. 2: Trust and Security in Collaborative Computing by Zou Xukai et al. Steven - Security Distributed.pmd 2 5/25/2007, 1:58 PM Computer and Network Security Vol. 1 Security in i Distri buted and /Networking . Systems Editors Yang Xiao University of Alabama, USA Yi Pan Georgia State University, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. SECURITY IN DISTRIBUTED AND NETWORKING SYSTEMS Series in Computer and Network Security — Vol. 1 Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • Distributed Computing Network System, Said to Be "Distributed" When the Computer Programming and the Data to Be Worked on Are Spread out Over More Than One Computer
    Praveen Balda et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 761-767 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 4, Issue. 4, April 2015, pg.761 – 767 RESEARCH ARTICLE Security Enhancement in Distributed Networking Praveen Balda, Sh. Matish Garg Distributed Networking is a distributed computing network system, said to be "distributed" when the computer programming and the data to be worked on are spread out over more than one computer. Usually, this is implemented over a network. Prior to the emergence of low-cost desktop computer power, computing was generally centralized to one computer. Although such centers still exist, distribution networking applications and data operate more efficiently over a mix of desktop workstations, local area network servers, regional servers, Web servers, and other servers. One popular trend is client/server computing. This is the principle that a client computer can provide certain capabilities for a user and request others from other computers that provide services for the clients. (The Web's Hypertext Transfer Protocol is an example of this idea.) Enterprises that have grown in scale over the years and those that are continuing to grow are finding it extremely challenging to manage their distributed network in the traditional client/server computing model. The recent developments in the field of cloud computing has opened up new possibilities. Cloud-based networking vendors have started to sprout offering solutions for enterprise distributed networking needs.
    [Show full text]
  • The Cloud Is Here: Embrace the Transition
    Hybrid cloud SaaS IaaS Private cloud Public cloud PaaS The cloud is here: embrace the transition How organizations can stop worrying and learn to “think cloud” Clouds in the forecast 3 The cloud’s sunny side 4 Avoid common pitfalls 6 Doing cloud “right” 12 Follow the steps 16 Conclusion 21 Contacts 22 Endnotes 23 The cloud is here: embrace the transition | Introduction Clouds in the forecast The emergence of cloud computing has business and information technology (IT) leaders asking fundamental questions: How can we better understand the risks and opportunities that cloud computing presents? How do we take advantage of these opportunities, not fall behind, and not make costly mistakes? How do we survive and thrive in the cloud? The growth and maturation of the cloud Some notable examples of leading marketplace has not only proven the software deployed via cloud services viability of commercial cloud offerings include business productivity suites (such but also represents a fundamental shift as Google G Suite, Microsoft Office 365), in technology management philosophy. customer relationship management With traditional practices garnering limited (e.g., Salesforce.com), enterprise service return on investment and providing limited management (e.g., ServiceNow), talent business agility, organizations are moving management (e.g., SuccessFactors, Taleo), away from the do‑it‑yourself mentality and and even full suites of Enterprise Resource toward using technology services from Planning (ERP) solutions. This list is rapidly cloud services providers (CSPs), who can do expanding as software companies begin things better, faster, and often cheaper. the transition from delivering their software as on‑premise installations to software While many organizations are apprehensive as a service (SaaS) delivery models.
    [Show full text]
  • Integrated High Definition LED Television User's Guide
    Integrated High Definition LED Television User’s Guide: 32L4300U / 39L4300U / 50L4300U / 58L4300U 50L7300U / 58L7300U / 65L7300U If you need assistance: Toshiba's Support Web site support.toshiba.com For more information, see “Troubleshooting” on page 160 in this guide. Owner's Record The model number and serial number are on the back and side of your television. Record these numbers, whenever you communicate with your Toshiba dealer about this Television. Model name: Serial number: Register your Toshiba Television at register.toshiba.com Note: To display a High Definition picture, the TV must be receiving a High Definition signal (such as an over- the-air High Definition TV broadcast, a High Definition digital cable program, or a High Definition digital satellite program). For details, contact your TV antenna installer, cable provider, or GMA300019013 satellite provider 6/13 2 CHILD SAFETY: PROPER TELEVISION PLACEMENT MATTERS TOSHIBA CARES • Manufacturers, retailers and the rest of the consumer electronics industry are committed to making home entertainment safe and enjoyable. • As you enjoy your television, please note that all televisions – new and old- must be supported on proper stands or installed according to the manufacturer’s recommendations. Televisions that are inappropriately situated on dressers, bookcases, shelves, desks, speakers, chests, carts, etc., may fall over, resulting in injury. TUNE IN TO SAFETY • ALWAYS follow the manufacturer’s recommendations for the safe installation of your television. • ALWAYS read and follow all instructions for proper use of your television. • NEVER allow children to climb on or play on the television or the furniture on which the television is placed. • NEVER place the television on furniture that can easily be used as steps, such as a chest of drawers.
    [Show full text]
  • SDS 940 THEORY of OPERATION Technical Manual SDS 98 01 26A
    SDS 940 THEORY OF OPERATION Technical Manual SDS 98 01 26A March 1967 SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960 ® 1967 Scientific Data Systems, Inc. Printed in U. S. A. TABLE OF CONTENTS Section Page I GENERAL DESCRIPTION ...•.••.•••••.••.••.•..•.••••• 1-1 1.1 General ................................... 1-1 1.2 Documentation .•...•..•.••..•••••••.•.••.••••• 1-1 1 .3 Physical Description ..•...•.••••.••..••••..••••. 1-2 1.4 Featu re s • . • . • • • • . • • • • • . • • . • . • . • • . • • • 1-2 1 .5 Input/Output Capabi I ity •.•....•.•.......•.....•.. 1-2 1 .5. 1 Parallel Input/Output System .•...•.....••..•. 1-6 1.5.1.1 Word Parallel System ...........•.. 1-6 1.5.1.2 Single-Bit Control and Sense System .... 1-8 1 .5.2 Time-Multiplexed Communication Channels .....•. 1-8 1 .5.3 Direct Memory Access System ............... 1-9 1.5.3.1 Direct Access Communication Channels •. 1-9 1.5.3.2 Data Multiplexing System ...•.....•. 1-10 1 .5.4 Priority Interrupt System . • . 1-10 1.5.4.1 Externa I Interrupt •..........•.... 1-11 1.5.4.2 Input/Output Channe I ..•..•.•••••. 1-12 1.5.4.3 Real-Time Clock •••.••.••••••••• 1-12 1 .6 Input/Output Devices •..•..••.••.••.••.•••••..•. 1-12 1 .6. 1 Buffered Input/Output Devices ..••.••.•.•••.•• 1-12 1.6.2 Unbuffered Input/Output Devices ••••..••••..•• 1-14 II OPERATION AND PROGRAMMING •..•••••.••.•..•....••. 2-1 2. 1 General .•..•.......•......•..............•. 2-1 2.2 Chang i ng Operat ion Modes •.•.••.••.•••.•..•..•.•• 2-2 2.3 Modes of Operation •..••.••.••.••..••••..••••••• 2-2 2.3. 1 Normal Mode .••••••••••••••••••••.••••• 2-2 2.3.1.1 Interrupt Rout i ne Return Instru ction .•.•. 2-3 2.3.1.2 Overflow Instructions ...••..•••••• 2-3 2.3.1.3 Mode Change Instruction ....••.•..• 2-3 2.3.1.4 Data Mu Itiplex Channe I Interlace Word •.
    [Show full text]
  • An Interview With
    An Interview with WARREN PRINCE OH 413 Conducted by Jeffrey R. Yost on 4 April 2012 Computer Services Project Sunnyvale, California Charles Babbage Institute Center for the History of Information Technology University of Minnesota, Minneapolis Copyright, Charles Babbage Institute Warren Prince Interview 4 April 2012 Oral History 413 Abstract Warren Prince was an executive at Tymshare and served as the leader of TYMNET. He served on the management team at McDonnell Douglas after it acquired TYMNET. The interview concentrates on TYMNET’s history and explaining and providing context to some of the documents he provided for the interview. 2 Prince: So will you produce the chapter in your book out of audio? I’ve got a bunch of papers that might be of interest or might not. Yost: Terrific, I would. Prince: Because it kind of shows; first, on the TYMNET side it shows the growth of it and really, the initial problems of it, which graphically shows it instead of saying it. And then the McDonnell Douglas part. Anyway, we can get into that when the time comes. Yost: Sounds good. My name is Jeffrey Yost, from the Charles Babbage Institute at the University of Minnesota, and I’m here today on April 4th, 2012, with Warren Prince of Tymshare and TYMNET. I’d like to begin just with some brief biographical stuff. Could you tell me where you were born, where you grew up? Prince: Born in Walnut Creek, California but grew up mostly in Arizona; Glendale, Arizona. And went through; started at the University of Arizona, and then joined the Army.
    [Show full text]
  • The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
    The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems
    [Show full text]
  • Data Centers
    REPORT HIGHLIGHTS Technological innovations are rapidly changing our lives, our Heat sensing drones deployed after natural disasters to locate businesses, and our economy. Technology, no longer an isolated survivors and deliver lifesaving equipment can arrive at the scene business sector, is a facilitator enabling innovation, growth, and faster than first responders. Wearable technologies that we sport the strengthening of America’s traditional business sectors. From help us lead healthier lifestyles. Distance learning courses empower transportation and energy to finance and medicine, businesses children and adults to learn new skills or trades to keep up with rely on technology to interact with their customers, improve their the constantly evolving job market. Innovations in science, energy, services, and make their operations more globally competitive. manufacturing, health care, education, transportation and many Innovative technology is deeply integrated into the economy and other fields—and their jobs—are being powered by data centers. is the driving force behind the creation of new jobs in science, health care, education, transportation, and more. Technology has But the benefits of data centers go beyond powering America’s fundamentally transformed our economy—and is poised to fuel even cutting-edge innovations. The economic impact, direct and indirect, more growth in the future. is substantial. Overall, there were 6 million jobs in the U.S. technology industry last While being built, a typical data center employs 1,688 local workers, year, and we expect this to increase by 4.1% in 2017. Technology- provides $77.7 million in wages for those workers, produces $243.5 related jobs run the gamut—from transportation logistics and million in output along the local economy’s supply chain, and warehousing to programmers and radiologists.
    [Show full text]
  • Mapreduce Programming Oct 30, 2012
    15-440" MapReduce Programming Oct 30, 2012" Topics" n" Large-scale computing" l" Traditional high-performance computing (HPC)! l" Cluster computing! n" MapReduce" l" Definition! l" Examples! n" Implementation" n" Alternatives to MapReduce" n" Properties" – 1 –! Typical HPC Machine" Compute Nodes" Compute Nodes n" High end processor(s)" CPU CPU CPU • • • n" Lots of RAM" Mem Mem Mem Network" n" Specialized" Network n" Very high performance" Storage Server" • • • n" RAID-based disk array" Storage Server – 2 –! HPC Machine Example" Jaguar Supercomputer" n" 3rd fastest in world" Compute Nodes" n" 18,688 nodes in largest partition" n" 2X 2.6Ghz 6-core AMD Opteron" n" 16GB memory" n" Total: 2.3 petaflop / 300 TB memory" Network" n" 3D torus" l" Each node connected to 6 neighbors via 6.0 GB/s links! Storage Server" n" 10PB RAID-based disk array" – 3 –! HPC Programming Model" Application Programs Software Packages Machine-Dependent Programming Model Hardware n" Programs described at very low level" l" Specify detailed control of processing & communications! n" Rely on small number of software packages" l" Written by specialists! l" Limits classes of problems & solution methods! – 4 –! Bulk Synchronous Programming" Solving Problem Over Grid" n" E.g., finite-element computation" Partition into Regions" n" p regions for p processors" Map Region per Processor" n" Local computation sequential" n" Periodically communicate boundary values with neighbors" – 5 –! Typical HPC Operation" Characteristics" n" Long-lived processes" Message Passing" n" Make use
    [Show full text]
  • Wireless-World-1984
    a` Semiconductor buyer's guide ABC micro Mimicontroller XY plotter update Mobile radio Digital feedback , Australia AS 3.00 Norway Nkr 29.20 -Denmark DKr 34.50 Singapore MS .5.50 LSermany Dm 7.00 Spain Pts 340.00 Greece Dra 220.00 Switzerland SFr 7.00 Holland DFL 8.50 U.S.A. 5 3.75 Italy L 3800, www.americanradiohistory.com bench power supplies THE D RANGE ... Four models: Digital meters D30-2 0-30 volts at 2 amps single 1 mA resolution of current D30 -2T 0-30 volts at 2 amps twin 10 turn voltage control Measure external voltages D30-4 0-30 volts at 4 amps single Output on/off switch CV or Cl operation D100-1 0-100 volts at 1 amp single Send for new colour leaflet now to: FARNELL INSTRUMENTS LIMITED SANDBECK WAY WETHERBY WEST YORKSHIRE LS22 4DH TEL. (0937) 61961 TELEX 557294 OR HARPENDEN TEL. (05827) 66123 CIRCLE 1 FOR FURTHER INFORMATION www.americanradiohistory.com ThcAchcr-ing1e BComputcr The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users. FEATURES * High quality double sided plated through PCB * 4 Bytewide memory sockets - upto 64k * Power -fail and watchdog timer circuits * 4 Parallel ports with handshaking * Bus expansion connector * CMOS battery back-up * Counter -timer chip * 2 serial ports * 4 MHz. Z80A Telephone or write for full technical description and price information. OPTIONS * SDS BASIC with autostart and "user program in ROM" facility * SDS DEBUG MONITOR: a powerful 8k byte development aid * On board 120/240 volt mains power supply * Attractive two tone instrument case Morwood Da yt1 Ltd Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.
    [Show full text]