Hypomesus Pretiosus) to Environmental

Total Page:16

File Type:pdf, Size:1020Kb

Hypomesus Pretiosus) to Environmental THE PHYSIOLOGICAL RESPONSES OF SURF SMELT (HYPOMESUS PRETIOSUS) TO ENVIRONMENTAL STRESS IN PUGET SOUND, WA, USA A Thesis Presented to the Faculty of California State University, Stanislaus In Partial Fulfillment of the Requirements for the Degree of Master of Science in Ecology and Sustainability By Leah Marie Mellinger August 2018 CERTIFICATION OF APPROVAL THE PHYSIOLOGICAL RESPONSES OF SURF SMELT (HYPOMESUS PRETIOSUS) TO ENVIRONMENTAL STRESS IN PUGET SOUND, WA, USA by Leah Marie Mellinger Signed Certification of Approval page is on file with the University Library. Dr. Brian Sardella Date Professor of Biological Sciences Dr. Scott Hamilton Date Professor of Ichthyology Dr. Jeffrey Scales Date Professor of Biological Sciences © 2018 Leah Marie Mellinger ALL RIGHTS RESERVED DEDICATION I dedicate this thesis to my little family. I am so grateful for their support. Without my husband, Craig Mellinger, helping with my daughter, holding down the fort when I went on my research trips and being my rock, this thesis would not have been possible. Also, the additional support of my mother, Lisa Andreae Holmes, helping with watching my daughter and animals as well as helping editing was so crucial to my success. Thank you, I love you and couldn’t have done this without you. iv ACKNOWLEDGEMENTS This thesis was a huge undertaking and was only made possible by all those involved. Thank you to Dr. Brian Sardella for being my advisor and supporting my ambitious research ideas. Thanks to Dr. Scott Hamilton for being my committee member as well as helping set up my flow through system at Moss Landing Marine Lab. Thank you to Dr. Jeffrey Scales for joining my committee at the last minute and helping with the statistics and image J along with Dr. Kenneth Schoenly. Thanks to Dr. Matt Cover and Dr. Terry Jones for additional assistance with the microtome and microscope camera. Thank you to the BRC committee for my funding and Dr. Dietmar Kueltz and Leslie Oberholtzer for use of the UC Davis Histology Lab. Also, I thank Jerry Mayberry of Elk Grove Milling, Inc. for donating barrels for my flow through system at Moss Landing Marine Lab. A special thank you to all those involved in my Puget Sound and California collections, specifically: Karl Menard of the UC Davis Bodega Bay Marine Lab, Anna Kagely, Kurt Fresh, Joshua Chamberlin, and Jason Hall of NOAA NWFSC Seattle, WA, Phil Dionne and James Losee of Washington Department of Fish and Wildlife, Walker Duval, Tom Freidrich, Tim Wilson, and Sayre Hodgson of the Nisqually Tribe, Maxim Lundquist and Todd Zackey of the Tulalip Tribe, and Davey’s Live Bait. v TABLE OF CONTENTS PAGE Dedication ............................................................................................................... iv Acknowledgements ................................................................................................. v List of Tables .......................................................................................................... vii List of Figures ......................................................................................................... viii Abstract ................................................................................................................... ix Introduction ............................................................................................................. 1 Objective and Hypothesis ........................................................................... 9 Methods................................................................................................................... 11 Collection Sites ........................................................................................... 11 Assessment of Regional Water Quality ...................................................... 13 Fish Sampling Protocol ............................................................................... 14 Tissue Microarray Construction ................................................................. 14 Quantification of Representative Stress Proteins ........................................ 15 Statistical Analysis ...................................................................................... 17 Results ..................................................................................................................... 18 Regional Water Quality .............................................................................. 18 Marine Parasite Prevalence and Intensity ................................................... 18 Stress Protein Abundance based on Location and Season .......................... 22 Stress Protein Abundance in the Brain based on Temperature, Salinity and Parasite Intensity .................................................................................. 29 Stress Protein Abundance in the Heart based on Temperature, Salinity and Parasite Intensity .................................................................................. 31 Stress Protein Abundance in the Liver based on Temperature, Salinity and Parasite Intensity .................................................................................. 33 Discussion ............................................................................................................... 37 Conclusions ............................................................................................................. 42 Future Directions .................................................................................................... 44 vi References ............................................................................................................... 46 Appendices A. T-Test: Caspase 3, Glutathione S-Transferase, Heat Shock Protein 70, and Ubiquitin Florescence in the Brain and Parasite Intensity ..................................................................................................................... 57 B. T-Test: Caspase 3, Glutathione S-Transferase, Heat Shock Protein 70, and Ubiquitin Florescence in the Heart and Parasite Intensity ..................................................................................................................... 59 C. T-Test: Caspase 3, Glutathione S-Transferase, Heat Shock Protein 70, and Ubiquitin Florescence in the Liver and Parasite Intensity ..................................................................................................................... 61 D. Stepwise Backwards Linear Regression of Caspase 3 Florescence in the Liver ..................................................................................................................... 63 E. Stepwise Backwards Linear Regression of Glutathione S-Transferase Florescence in the Brain ..................................................................................................................... 65 F. Stepwise Backwards Linear Regression of Glutathione S-Transferase Florescence in the Heart ..................................................................................................................... 67 G. Stepwise Backwards Linear Regression of Heat Shock Protein 70 Florescence in the Liver ..................................................................................................................... 69 H. Stepwise Backwards Linear Regression of Ubiquitin Florescence in the Liver ..................................................................................................................... 71 vii LIST OF TABLES TABLE PAGE 1. Temperature and Salinity Data ......................................................................... 18 2. Two Way ANOVA Table GST in the Brain versus Season and Location ....... 24 3. Two Way ANOVA Table HSP70 in the Brain versus Season and Location ... 24 4. Two Way ANOVA Table GST in the Heart versus Season and Location ....... 26 5. Two Way ANOVA Table Caspase 3 in the Liver versus Season and Location 28 6. Two Way ANOVA Table HSP70 in the Liver versus Season and Location .... 28 7. Two Way ANOVA Table Ubiquitin in the Brain versus Season and Location 28 viii LIST OF FIGURES FIGURE PAGE 1. North Puget Sound, Washington Historical Water Quality Data ..................... 6 2. South Puget Sound, Washington Historical Water Quality Data ..................... 7 3. Wild Surf Smelt Collection Sites ...................................................................... 12 4. Summer and Winter Parasite Prevalence .......................................................... 20 5. Parasite Intensity versus Temperature and Salinity .......................................... 21 6. Mean Brain Abundances versus Location and Season ..................................... 23 7. Mean Heart Abundances versus Location and Season ..................................... 25 8. Mean Liver Abundances versus Location and Season ..................................... 27 9. The Effect of Temperature on Raw and Mean Brain GST Abundance ............ 30 10. The Effect of Temperature on Raw and Mean Heart GST Abundance ............ 32 11. The Effect of Temperature on Raw and Mean Liver Caspase 3 Abundance .... 34 12. The Effect of Temperature on Raw and Mean Liver HSP70 Abundance ........ 35 13. The Effect of Temperature on Raw and Mean Liver Ubiquitin Abundance .... 36 ix ABSTRACT Drastic environmental changes can severely affect a fish’s metabolism, growth, reproduction and overall survivability. There is a concern that the synergy of multiple stressors, like the threat of climate change, will lead to population collapses of environmentally sensitive
Recommended publications
  • Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012
    Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey Cover: Upper Left: Herring spawn, BC coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Left Center: Tufted Puffin and sand lance (Smith Island, Puget Sound) – Joseph Gaydos, SeaDoc Society. Right Center: Symposium attendants – Tami Pokorny, Jefferson County Water Resources. Upper Right: Buried sand lance – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Background: Pacific sardine, CA coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Edited by Theresa Liedtke, U.S. Geological Survey; Caroline Gibson, Northwest Straits Commission; Dayv Lowry, Washington State Department of Fish and Wildlife; and Duane Fagergren, Puget Sound Partnership Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Liedtke, Theresa, Gibson, Caroline, Lowry, Dayv, and Fagergren, Duane, eds., 2013, Conservation and Ecology of Marine Forage Fishes—Proceedings of a Research Symposium, September 2012: U.S.
    [Show full text]
  • Vii Fishery-At-A-Glance Night Smelt Scientific Name: Spirinchus Starksi Range
    Fishery-at-a-Glance Night Smelt Scientific Name: Spirinchus starksi Range: Night Smelt are distributed coast-wide from southeast Alaska to Point Arguello, Santa Barbara County. Habitat: Night Smelt occur in the surf and in depths from the surface to approximately 400 feet (122 meters). Size (length and weight): Night Smelt measure less than 6 inches total length (140 millimeters) weighing to 11 grams. Males are slightly longer and heavier than females. Life span: Night Smelt are short lived and believed to reach a maximum of 2 to 3 years. Reproduction: Spawning occurs in the surf along open coast coarse sand beaches from January to September. Eggs are fertilized in the wash of the surf, adhere to sand grains, and sink. Hatching occurs in approximately 2 weeks. Prey: Night Smelt feed on small crustaceans—primarily gammarid amphipods and mysid shrimp. Predators: Night Smelt provide forage for a wide range of predators, including Striped Bass, Redtail Surfperch, salmon, Harbor Seals, California Sea Lions, terns, gulls, and cormorants. Fishery: Commercial and recreational fisheries are shore-based. Area fished: Historically, fishing occurred from Moss Landing, Monterey County to the Oregon border. Currently, fishing occurs from San Mateo County to Del Norte County. Fishing season: Fishing occurs during the spawning season—January to September. Fishing gear: Fishermen fish from shore using A-frame dip nets. Market(s): Landed fish are sold for human consumption and aquarium food. Current stock status: No formal stock assessments exist for Night Smelt. Although catch rates have increased on average since the early 2000s, it is undetermined if this increase in the index is due to increased abundance or changes in fishermen behavior.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Surf Smelt Fact Sheet
    WASHINGTON STATE SURF SMELT FACT SHEET NAME: Surf smelt, Hypomesus pretiosus (Girard 1855). GEOGRAPHIC RANGE: Long Beach, California to Chignik Lagoon, Alaska. The Asian subspecies, Hypomesus pretiosus japonicas, occurs in the northwest Pacific Ocean. RELATED SPECIES: Several members of the smelt family, Osmeridae, occur in Washington waters, including eulachon (Columbia River smelt, hooligan) Thaleichthys pacificus, longfin smelt Spirinchus thaleichthys, whitebait smelt Allosmerus elongatus, and night smelt Spirinchus starksi. Unlike the other species, both eulachon and longfin smelt are anadromous, migrating into streams in the winter to spawn. Note: Columbia River smelt (eulachon) are listed as Threatened under the Endangered Species Act (ESA) and recreational fishing for this species in Washington waters is limited to years in which the run size is exceptionally large. Be sure to check the recreational fishing regulations (http://wdfw.wa.gov/fishing/regulations/) before attempting to fish for any smelt species. RECOGNITION: Characteristic dark stripe down the middle of the side of the body. Also notable for small mouth with maxillary (upper jaw bone) that does not extend past the midpoint of the pupil of the eye; dorsal fin begins in front of the pelvic fin; pelvic fins short; and small, curved adipose fin. Length up to eight inches. LOCAL DISTRIBUTION: Surf smelt occur abundantly throughout the nearshore marine waters of Washington, from the Columbia River to the Canadian border and into southernmost Puget Sound and Hood Canal. Genetic research suggests that, despite this broad distribution, surf smelt throughout Puget Sound represent a single stock. SPAWN TIMING: Surf smelt populations can generally be divided into summer spawners and fall/winter spawners, though year- round spawning has been documented in the Whidbey Basin, Port Susan, portions of the San Juan Islands, and central Puget Sound (Eagle Harbor and Sinclair Inlet).
    [Show full text]
  • Fact Sheet on Surf Smelt (Hypomesus Pretiosus) in the Salish Sea
    Fact Sheet on Surf Smelt (Hypomesus pretiosus) in the Salish Sea Prepared by the SeaDoc Society (www.seadocsociety.org) April 2014 Why smelt and other forage fish are important: Photo credit J. Gaydos - Surf Smelt are delicious to eat - They provide a fun recreational fishing opportunity for residents of the Salish Sea - Provide income to 9 licensed commercial fishermen (average annual total catch value of $46,748) - Surf Smelt and other forage fish play a key role in the ecosystem by converting energy produced by plankton to fat needed by predatory fish (e.g., lingcod, salmon), seabirds and marine mammals - Approximately 1/3 of forage fish populations are thought to be needed to sustain seabirds - Forage fish populations are vulnerable and don’t always recover from depletion - Forage fish are worth 2x as much in the water as in the net because they serve as prey for other commercially important fisheries - Many marine fish, bird and mammal species that eat Surf Smelt and other forage fish are threatened Cury, P. M., et al., 2011. Global seabird response to forage fish depletion – one-third for the birds. Science 334:1703-1706 Pikitch, E., et al., 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Biology: - Year round residents; relatively short lived; spawn year round on some mixed sand-gravel beaches - A small number of spawning sites are disproportionately important for spawning and impacts at these site could greatly reduce surf smelt reproduction - Shoreline modifications can reduce Surf Smelt spawning success by half at some locations Bargmann, G.
    [Show full text]
  • CHAPTER 2: Are Hypomesus Chishimaensis and H
    MOLECULAR SYSTEMATICS AND BIOGEOGRAPHY OF THE HOLARCTIC SMELT FAMILY OSMERIDAE (PISCES). by KATRIINA LARISSA ILVES B.Sc., The University of British Columbia, 2000 B.A., The University of British Columbia, 2001 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA December 2007 © Katriina Larissa Ilves, 2007 ABSTRACT Biogeographers have long searched for common processes responsible for driving diversification in the Holarctic region. Although terrestrial flora and fauna have been well studied, much of the marine biogeographic work addresses patterns and processes occurring over a relatively recent timescale. A prerequisite to comparative biogeographic analysis requires well-resolved phylogenies of similarly distributed taxa that diverged over a similar timeframe. The overall aim of my Ph.D. thesis was to address fundamental questions in the systematics and biogeography of a family of Holarctic fish (Osmeridae) and place these results in a broad comparative biogeographic framework. With eight conflicting morphological hypotheses, the northern hemisphere smelts have long been the subjects of systematic disagreement. In addition to the uncertainty in the interrelationships within this family, the relationship of the Osmeridae to several other families remains unclear. Using DNA sequence data from three mitochondrial and three nuclear genes from multiple individuals per species, I reconstructed the phylogenetic relationships among the 6 genera and 15 osmerid species. Phylogenetic reconstruction and divergence dating yielded a well-resolved phylogeny of the osmerid genera and revealed several interesting evolutionary patterns within the family: (1) Hypomesus chishimaensis and H. nipponensis individuals are not reciprocally monophyletic, suggesting that they are conspecific and H.
    [Show full text]
  • Adult Digeneans (Trematoda) Parasitic in Hypomesus Nipponensis (Osteichthyes, Osmeridae) from Brackish-Water Lakes of Japan
    Bull. Natl. Mus. Nat. Sci., Ser. A, 44(2), pp. 57–68, May 22, 2018 Adult Digeneans (Trematoda) Parasitic in Hypomesus nipponensis (Osteichthyes, Osmeridae) from Brackish-water Lakes of Japan Takeshi Shimazu 10486–2 Hotaka-Ariake, Azumino, Nagano 399–8301, Japan E-mail: [email protected] (Received 10 March 2018; accepted 28 March 2018) Abstract Adult digeneans (Trematoda) were found in Hypomesus nipponensis McAllister (Oste- ichthyes, Osmeridae) from a brackish-water lake, Lake Abashiri, in Hokkaido, Japan. Some unidentified digenean specimens that had previously been recorded from Hypomesus nipponensis from brackish-water lakes in Japan were also reexamined. The digeneans were classified into three species of marine origin: Pronoprymna petrowi (Layman, 1930) Bray and Gibson, 1980 (Micro- phalloidea, Faustulidae) from Lakes Abashiri and Tofutsu in Hokkaido, Lake Takahoko in Aomori Prefecture, and Lake Koyama in Tottori Prefecture; Brachyphallus crenatus (Rudolphi, 1802) Odhner, 1905 (Hemiuroidea, Hemiuridae) from Lakes Abashiri and Tofutsu; and Lecithaster gib- bosus (Rudolphi, 1802) Lühe, 1901 (Hemiuroidea, Lecithasteridae) from Lakes Abashiri, Tofutsu, and Koyama. They are described and figured. Their geographical distribution and life cycles are briefly discussed. Key words: Adult digeneans, parasites, Hypomesus nipponensis, brackish-water lakes, Japan. Introduction and 2017. In this paper, three species of adult digeneans found in Hypomesus nipponensis are Little is known about adult digeneans (Trema- identified, described, and figured on the basis of toda) parasitic in Hypomesus nipponensis McAl- specimens collected by Ohtomo, Kikuchi, and lister (Osteichthyes, Osmeridae) in brackish me. Their geographical distribution and life waters of Japan. Ohtomo (2003) found three spe- cycles are briefly discussed. cies of adult digeneans, Pronoprymna sp., Brachyphallus sp., and Lecithaster sp., in Materials and Methods Hypomesus nipponensis from Lake Abashiri in Hokkaido.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • View Full Report
    Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) October 2007 Final 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Spawning, Early Life Stages, and Early Life Histories of the Osmerids Found in the Sacramento-San Joaquin Delta of California 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Johnson C. S. Wang 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT National Environmental Science, Inc., Central Valley Project/Tracy NUMBER Fish Collection Facility, 6725 Lindemann Road, Byron CA 94514 Bureau of Reclamation, Tracy Fish Collection Facility, TO-412, Volume 38 6725 Lindemann Road, Byron CA 94514 9.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Molecular Phylogenetics and Evolution 50 (2009) 163–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular resolution of the systematics of a problematic group of fishes (Teleostei: Osmeridae) and evidence for morphological homoplasy Katriina L. Ilves *, Eric B. Taylor Department of Zoology, Biodiversity Research Centre, Native Fishes Research Group, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: Relationships among the species of Northern Hemisphere smelts (family Osmeridae) have long been Received 16 July 2008 debated in the fish systematics literature. Eight independent studies based on morphological characters Revised 22 October 2008 failed to reach any consensus on osmerid interrelationships. We reconstruct the osmerid phylogeny Accepted 25 October 2008 based on DNA sequence data from three mitochondrial (cytb, 16S, 12S) and three nuclear (ITS2, S71, Available online 5 November 2008 RAG1) gene regions from multiple individuals of the 14 species in 6 genera, using the Japanese ayu (Ple- coglossus altivelis) as the outgroup. Analyses with different combinations of nuclear and mitochondrial Keywords: datasets yielded a generally well-resolved phylogeny of the genera that conflicts with previous hypoth- Osmeridae eses of osmerid interrelationships, and Shimodaira–Hasegawa tests suggest our topology with the cur- Smelt Plecoglossidae rent molecular dataset is significantly better than earlier reconstructions. In addition, mapping 114 Salangidae morphological characters used in previous studies onto our phylogeny shows widespread homoplasy, Homoplasy which is likely the source of the systematic disagreement produced in earlier works. Mitochondrial and nuclear DNA Ó 2008 Elsevier Inc.
    [Show full text]
  • Teleostei: Salmoniformes), with the Description of a New Species from the Southern Kuril Islands
    Species Diversity. 1997, 2, 59 82 A Revision of the Osmerid Genus Hypomesus Gill (Teleostei: Salmoniformes), with the Description of a New Species from the Southern Kuril Islands Toshiro Saruwatari1, Juan Andres Lopez2, and Theodore W. Pietsch2 'Division of Biology of Fisheries Resources, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo, 164, Japan ''School of Fisheries, University of Washington, Box 355100, Seattle, Washington 98195-5100, USA (Received 30 August 1996; Accepted 30 April 1997) A systematic revision of the osmerid genus Hypomesus Gill, based on a detailed analysis of external and internal morphological characters, revealed the presence of six species, one of which is described as new. These six species fall readily into three species-groups: the Hypomesus nipponensis group, containing H. nipponensis McAllister,//, chishimaensis new species, and//, transpacificus McAllister; the//. olidus group, containing only //. olidus Pallas; and the H. japonicus group, containing H. japonicus Brevoort and H. pretiosus Girard. Synonymies, duignoses, and descriptions are given for all taxa, geographic distributions are described and plotted, and a key to the species of the genus is provided. Key Words: Teleostei, Salmoniformes, Osmeridae, Hypomesus, new species, revisionary studies, Kuril Islands, Kunashir, Iturup, Zelionyi Introduction The genus Hypomesus, family Osmeridae, contains relatively small fishes that inhabit fresh, brackish, and coastal marine waters of the northern Pacific Rim. Most members of the group are commercially exploited for human consumption and recreational fishing. McAllister (1963), in the most current taxonomic revision of the genus, recognized three species and four subspecies (Table 1). Based primarily on osteological characters, Kljukanov (1970a, b) elevated these subspecies to full species rank; but while Kljukanov's work was an improvement over past interpreta tions, he still left the nomenclature of the genus in disarray.
    [Show full text]
  • STUDIES on the LOCAL FORM and DISPERSAL of the CHIKA, HYPOMESUS PRETIOSUS JAPONICUS Title (BREVOORT) in JAPAN
    STUDIES ON THE LOCAL FORM AND DISPERSAL OF THE CHIKA, HYPOMESUS PRETIOSUS JAPONICUS Title (BREVOORT) IN JAPAN Author(s) YANAGAWA, Hiroyuki Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 27(1-2), 1-78 Issue Date 1981-03 Doc URL http://hdl.handle.net/2115/21868 Type bulletin (article) File Information 27(1_2)_P1-78.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP STUDIES ON THE LOCAL FORM AND DISPERSAL OF THE CHIKA, HYPOMESUS PRET/OSUS JAPON/CUS (BREVOORT) IN JAPAN Hiroyuki YANAGAWA Faculty of Fisheries, Hokkaido University, Hakodate, Japan Contents Page I. Introduction . 2 II. Acknowledgements .................................................... 3 III. Geographic Variation in Meristic Characters ............................ 4 1. Materials and Methods ............................................ 5 2. Selection of Meristic Characters .................................... 6 3. Number of Abdominal, Caudal and Total Vertebrae ................ 7 4. Number of Dorsal, Caudal and Pelvic Fin Rays .................... 13 5. Number of Branchiostegal Rays.................................. 17 6. Number of Upper, Lower and Total Gill Rakers .................... 19 7. Discussion........................................................ 23 IV. Comparisons of the Two Local Forms, Mori and Hakodate .............. 27 1. Materials and Methods............................................ 28 2. Body Length Growth Equations .................................... 30 3. Body Weight Growth Equations...................................
    [Show full text]