CLN7 Disease, Variant Late-Infantile

Total Page:16

File Type:pdf, Size:1020Kb

CLN7 Disease, Variant Late-Infantile There are grants and funds available to ensure that the work groups and individuals to help with the challenges that will involved is affordable. An occupational therapist will consult be faced is important. This support extends to wider family on all aspects of any adaptations and assist the family in members. There are several options to consider should undertaking this process. families wish to explore ways of maximising the limited time available to share with their children. Contacting a charitable CLN7 Disease, Variant Late-Infantile wish-granting organisation may lead to them being able to Will there be an impact on the child’s education? create some valuable and significant memories. Are there any alternative names? How are NCLs inherited? Education will continue to be important for the child and family Where can I get additional information and support? and there will be many aspects that require consideration and significant assistance from those around them. CLN7 disease, variant late-infantile may also be referred to Most forms of NCL are inherited as “autosomal recessive” The BDFA offers support to any family member, friend, as variant late-infantile CLN7 disease, alongside Variant Late disorders. This is one of several ways that a trait, disorder, The Children and Families Act 2014 came into force in professional or organisation involved in caring for a child with Infantile Neuronal Ceroid Lipofuscinosis; though was more or disease can be passed down through families. An September 2014. The introduction of the 0-25 Education, CLN7 disease or any other form of NCL throughout the UK. commonly known as Variant Late-Infantile Batten Disease. autosomal recessive disorder means that both copies of Health and Care Plan should help children, young people We provide informed guidance and assistance as well as the gene are abnormal (one inherited from each parent) with and families affected by NCL. Education, Health and Care seeking to actively increase awareness of the disease and neither working properly. The disease does not depend on (EHC) Plans will gradually replace Statements of Special facilitate future research to identify potential therapies and What are Neuronal Ceroid Lipofuscinoses (NCLs)? the sex of an individual. Educational Needs. ultimately a cure. Children who do not yet have a Statement will have a We organise conferences, workshops and are able to These refer to several different genetic life-limiting What are the chances of inheriting CLN7 disease? statutory Education, Health and Care Needs assessment. arrange connections with other affected families. The BDFA neurodegenerative diseases that share similar features. An EHC Plan will be drawn up that is personalised to meet also coordinate a Small Grants Scheme that can provide Although the different forms of NCL are sometimes the education, health and care needs of the child. assistance for a range of needs. The BDFA has a Support described according to the age of the child at the onset CLN7 disease is inherited as an autosomal recessive and Advocacy Partner who is able to assist with many of of the disease, they are now better classified according to disorder, which means that both chromosomes carry It remains probable that many parents will continue to the issues highlighted in this document and can discuss the gene identified as the cause e.g. CLN7 (gene) disease, mutations in the CLN7 gene. Therefore both biological need guidance, understanding and support when trying each of them in greater detail and on a more personal basis. variant late-infantile (age of onset), CLN3 (gene) disease, parents of a child with this diagnosis will be carriers of the to navigate the process of statutory assessment and the The BDFA family folder can also provide further specific juvenile (age of onset). disease but physically unaffected by it. drawing up of the EHC Plan. information on CLN7 disease. The folder is free for all families Unaffected Unaffected and available to professionals at a cost of £25. Carrier Carrier A child born to parents What causes NCL? Father Mother The BDFA has expertise in this field and can be approached who both carry the by any parties seeking information or help. Please contact the BDFA Family Support and Advocacy autosomal recessive Partner via our Freephone Helpline: 0800 046 9832 or Since the first genes causing NCL were identified in 1995, mutation in the CLN7 The BDFA Educational Advisor may be able to provide email: [email protected] for further information over 400 mutations in 14 different genes have been described gene has a 25% (1 in 4) specific support and can be contacted and to order a copy of the family folder. that cause the various forms of NCL disease. Our cells contain chance of inheriting the via 0800 046 9832 email: [email protected] thousands of genes that are lined up along chromosomes. abnormal malfunctioning There are a number of local and national organisations that Human cells contain 23 pairs of chromosomes (46 in total). genes from both parents are also able to offer various forms of support and information Most genes control the manufacture of at least one protein. and developing CLN7 In what other ways can families be supported? that will be relevant to families. The BDFA can provide details These proteins have different functions and include enzymes disease. and information about them. that act to speed up molecular chemical reactions. The They will have a 50% (1 The realities of caring for a child who has CLN7 disease NCLs are caused by abnormal genes, which are unable in 2) chance of inheriting can place enormous strain on a family, both physical and It may also be appropriate for a referral to be made to a local to produce the required proteins. As a result, the cells do one abnormal gene, emotional. It will impact upon all members in numerous children’s hospice service, as this can offer an additional not work properly and this leads to the development of Non- Unaffected Unaffected Affected Affected Carrier Carrier CLN7 which would make them a ways and so being made aware that support is available to experienced and skilled source of holistic support. symptoms associated with these diseases. Disease carrier who is unaffected 25% 50% 25% by the disease. There is The information in this document is provided on the understanding that it is intended for general information purposes only, therefore the Batten Disease Family What specifically causes CLN7 disease? a 25% (1 in 4) chance of Association (BDFA) accepts no responsibility or liability for any other form of use, nor for circumstances arising from any unintended or unsanctioned use. the child being born with two normal genes and therefore The BDFA has made every effort to ensure that the information provided is appropriate and accurate at the time of publication. All decisions pertaining to care and treatment of an individual child should be managed, in conjunction with parents or legal guardians, by qualified professionals working for the appropriate being non-affected (not a carrier). health, educational and social services. The gene called CLN7 and/or MFSD8 (CLN7) was Some of the information contained in this leaflet is based upon chapters in “The Neuronal Ceroid Lipofuscinoses (Batten Disease) 2nd Edition” discovered to be the cause of disease in 2007, and lies on When it is known that both parents are carriers of the by Goebel, Mole & Williams (Eds), Oxford University Press 2011 and is used with permission. chromosome 4. It encodes a protein, MFSD8, which belongs abnormal gene, we refer to there being a 2 in 3 chance of Permission has also been granted for the inclusion of additional information sourced from Dr. Ruth Williams (NCL2012 Abstract Book, Clinical Summaries, 2012) to a large group of proteins, the major facilitator superfamily a child being a carrier, once it is established that they are (MFS). These proteins are found in cell membranes inside Contributors: BDFA Harriet Lunnemann QSW, Heather Band MSc, Barbara Cole QTVI, Matt Hobbs RN. unaffected by the disease. Advisors: Professor Paul Gissen, Scientific and Medical Advisor, Professor Sara Mole, Scientific Advisor, and around the cell and are involved in transporting small Clare Beesley PhD, Scientific Advisor. With support from Bluepepper Designs. molecules across these membranes. Based on this © Batten Disease Family Association, 2017(r) Registered Charity in England and Wales No. 1084908 - Scotland SCO47408 With any pregnancy, the probability of a child inheriting one knowledge, MFSD8 may also function in this way inside the or both genes from their parents is the same each time, BDFA, The Old Library, 4 Boundary Road, Farnborough, Hants. GU14 6SF cell however what it transports is not known at present. irrespective of any sibling’s status. Freephone Helpline: 0800 046 9832 Email: [email protected] Website: www.bdfa-uk.org.uk www.bdfa-uk.org.uk Freephone Helpline: 0800 046 9832 Freephone Helpline: 0800 046 9832 www.bdfa-uk.org.uk How is it diagnosed? are prone to erratic movements of their head (nods). They to posture, seating, skin and mouth care is essential and families should be offered support from various professionals may have difficulty sleeping and often become distressed children will require additional nutritional support that will attached to their local health, social, educational services around this time, usually without obvious reason. Their include consideration of a gastrostomy. and the BDFA Support and Advocacy Partner. Ideally a Children will probably have been seen by a paediatrician vision gradually deteriorates, with its loss being ultimately “Team Around the Child” will be formed, with one of the and paediatric neurologist, because of symptoms such as inevitable. professionals appointed as a Keyworker for the family. seizures.
Recommended publications
  • History of Cln7 Biology of Cln7 Symptoms Diagnosis Management Strategies
    Understanding CLN7 HISTORY OF CLN7 BIOLOGY OF CLN7 SYMPTOMS DIAGNOSIS MANAGEMENT STRATEGIES Understanding CLN7 Batten disease is a group of rare neurodegenerative diseases, also known as neuronal ceroid lipofuscinoses (NCLs). Each NCL disease is classified by the gene that causes it. The name of each gene begins with CLN – ceroid lipofuscinosis, neuronal – followed by a unique number that indicates the subtype. Changes in the normal function of these genes, due to pathogenic variants, lead to disruption of normal protein function. This disruption results in lysosomal dysfunction, and the accumulation of molecules in the cells throughout the body. The symptoms, severity, onset, and progression across the subtypes vary. Both males and females are affected. The CLN7 subtype of Batten disease is caused by a variant in the CLN7 gene, also called the MFSD8 gene, which leads to disruption of normal CLN7 protein function. The exact function of this protein is unknown. Individuals with CLN7 typically develop neurological signs and symptoms in early childhood, such as seizures, progressive deterioration in intellectual and motor capabilities, and loss of vision. The disease ultimately leads to a shortened lifespan. Source: Batten Disease Fact Sheet. (2019, June 24). Retrieved August 8, 2019, from link. History of CLN7 History of Batten Disease Batten disease, a common name for a rare class of diseases called neuronal ceroid lipofuscinoses (NCLs), was first described in 1903 by British neurologist and pediatrician Frederick Batten. Today, there are 13 known subtypes of Batten disease. Symptoms and disease management for each subtype of Batten disease vary, although several subtypes share similar features and symptoms.
    [Show full text]
  • CLN7 Disease
    CLN7 disease Description CLN7 disease is an inherited disorder that primarily affects the nervous system. The signs and symptoms of this condition typically begin between ages 2 and 7. The initial features are usually vision loss and problems with movement that might seem like clumsiness. Additional signs and symptoms of CLN7 disease include muscle twitches ( myoclonus), difficulty coordinating movements (ataxia), recurrent seizures (epilepsy), and speech impairment. Mental functioning and motor skills (such as sitting and walking) decline with age. Individuals with CLN7 disease typically do not survive past their teens. CLN7 disease is one of a group of disorders known as neuronal ceroid lipofuscinoses ( NCLs), which may also be collectively referred to as Batten disease. All these disorders affect the nervous system and typically cause worsening problems with vision, movement, and thinking ability. The different NCLs are distinguished by their genetic cause. Each disease type is given the designation "CLN," meaning ceroid lipofuscinosis, neuronal, and then a number to indicate its subtype. Frequency The incidence of CLN7 disease is unknown; more than 70 cases have been described in the scientific literature. CLN7 disease was first diagnosed in the Turkish population and was thought to be limited to individuals in that group. However, CLN7 disease has now been identified in people around the world. Collectively, all forms of NCL affect an estimated 1 in 100,000 individuals worldwide. Causes Mutations in the MFSD8 gene cause CLN7 disease. The MFSD8 gene provides instructions for making a protein whose function is unknown. The MFSD8 protein is embedded in the membrane of cell compartments called lysosomes, which digest and recycle different types of molecules.
    [Show full text]
  • The Novel Membrane-Bound Proteins MFSD1 and MFSD3 Are Putative SLC Transporters Affected by Altered Nutrient Intake
    J Mol Neurosci DOI 10.1007/s12031-016-0867-8 The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake Emelie Perland1,2 & Sofie V. Hellsten2 & Emilia Lekholm2 & Mikaela M. Eriksson2 & Vasiliki Arapi2 & Robert Fredriksson2 Received: 29 August 2016 /Accepted: 21 November 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Membrane-bound solute carriers (SLCs) are essen- Introduction tial as they maintain several physiological functions, such as nutrient uptake, ion transport and waste removal. The SLC Membrane-bound transporters are physiologically important family comprise about 400 transporters, and we have identi- as they keep the homeostasis of soluble molecules within cel- fied two new putative family members, major facilitator su- lular compartments, and it is crucial to study their basic his- perfamily domain containing 1 (MFSD1) and 3 (MFSD3). tology and function to understand the human body. The solute They cluster phylogenetically with SLCs of MFS type, and carrier (SLC) superfamily is the largest group of membrane- both proteins are conserved in chordates, while MFSD1 is also bound transporters in human and it includes 395 members, found in fruit fly. Based on homology modelling, we predict divided in 52 families (Hediger et al. 2004). SLCs utilize 12 transmembrane regions, a common feature for MFS trans- ATP-independent mechanisms to move nutrients, ions, drugs porters. The genes are expressed in abundance in mice, with and waste over lipid membranes, and SLC deficiencies are specific protein staining along the plasma membrane in neu- associated with several human diseases (Hediger et al.
    [Show full text]
  • Towards Therapy for Batten Disease
    Towards therapy for Batten disease Mariana Catanho da Silva Vieira MRC Laboratory for Molecular Cell Biology University College London PhD Supervisor: Dr Sara E Mole A thesis submitted for the degree of Doctor of Philosophy University College London September 2014 Declaration I, Mariana Catanho da Silva Vieira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The gene underlying the classic neurodegenerative lysosomal storage disorder (LSD) juvenile neuronal ceroid lipofuscinosis (JNCL) in humans, CLN3, encodes a polytopic membrane spanning protein of unknown function. Several studies using simpler models have been performed in order to further understand this protein and its pathological mechanism. Schizosaccharomyces pombe provides an ideal model organism for the study of CLN3 function, due to its simplicity, genetic tractability and the presence of a single orthologue of CLN3 (Btn1p), which exhibits a functional profile comparable to its human counterpart. In this study, this model was used to explore the effect of different mutations in btn1 as well as phenotypes arising from complete deletion of the gene. Different btn1 mutations have different effects on the protein function, underlining different phenotypes and affecting the levels of expression of Btn1p. So far, there is no cure for JNCL and therefore it is of great importance to identify novel lead compounds that can be developed for disease therapy. To identify these compounds, a drug screen with btn1Δ cells based on their sensitivity to cyclosporine A, was developed. Positive hits from the screen were validated and tested for their ability to rescue other specific phenotypes also associated with the loss of btn1.
    [Show full text]
  • Molecular Basis of the Ncls
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1832 (2013) 1793–1794 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Preface Special issue: Molecular basis of the NCLs The neuronal ceroid lipofuscinoses (NCLs), often known as Batten well as providing links to the updated web-based NCL Mutation disease, are a group of rare and devastating neurodegenerative dis- and Family Databases. orders. They commonly affect children but can strike at any age, Bioinformatic approaches have become more sophisticated and from before birth up to late in life. They are genetic diseases, usu- used to advance research particularly in the areas of establishing the ally inherited in an autosomal recessive manner, and at present are genetic basis of disease in individual families and in predicting the incurable. molecular basis of NCL disease. These new and recent approaches in This special issue follows the latest international meeting on the NCL field are summarised by Kmoch et al. the NCLs—the 13th international congress, NCL2012 (http://www. A review on the clinical perspectives of the NCLs summarises fea- ncl2012.org)—which was held in March 2012 in London, United tures of the different NCLs, such as range of ages at onset and presenting Kingdom, and attended by a total of >150 clinical, scientificandpro- symptoms, and characteristics of progression (including involvement of fessional experts from around the world. There were 50 talks and organs outside the nervous system), together with a recently adopted 64 posters, and 2 outreach workshops for professionals.
    [Show full text]
  • Report for International Society for Neurochemistry A
    Small Conference Report for International Society for Neurochemistry a. Basic information (title of the meeting, dates, organizer, venue, etc.) 16th International Conference on Neuronal Ceroid Lipofuscinosis (Batten Disease) 12-16 September 2018, Royal Holloway University of London, Egham, London UK Scientific Organising Committee (SOC): Sara Mole University College London, London, UK, Chair Susan Cotman Harvard Medical School, Boston, USA Jonathan Cooper Harbor UCLA Medical Center, Los Angeles, USA Angela Schultz University Medical Center Hamburg-Eppendorf, Hamburg, Germany Alexander Smith University College London, London, UK Heather Band Batten Disease Family Association, Farnborough, UK Ruth Williams Guy’s and St Thomas’ Hospital, London, UK Emyr Lloyd-Evans Cardiff University, Cardiff, UK Jill Weimer Sanford Research, Sioux Falls, USA Juan Bolanos University of Salamanca, Salamanca, Spain Marco Sardiello Baylor College of Medicine, Houston, USA Margie Frazier Batten Disease Support and Research Association, USA Miriam Nickel University Medical Center Hamburg-Eppendorf, Hamburg, Germany Stephanie Hughes University of Otago, Dunedin, New Zealand Steve Gray University of Texas Southwestern Medical Center, Dallas, USA Thomas Wishart University of Edinburgh, Edinburgh, UK Wendy Heywood UCL Great Ormond Street Institute of Child Health, London, UK Logistics Planning Group (LPG): Prof Sara Mole University College London, London UK, Chair Dr Claire Russell Royal Veterinary College, London, UK Heather Band Batten Disease Family Association,
    [Show full text]
  • EMBO Conference on Fission Yeast: Pombe 2013 7Th International Fission Yeast Meeting London, United Kingdom, 24 - 29 June 2013
    Abstracts of papers presented at the EMBO Conference on Fission Yeast: pombe 2013 7th International Fission Yeast Meeting London, United Kingdom, 24 - 29 June 2013 Meeting Organizers: Jürg Bähler UCL, UK Jacqueline Hayles CRUK-LRI, UK Scientific Programme: Robin Allshire UK Rob Martienssen USA Paco Antequera Spain Hisao Masai Japan Francois Bachand Canada Jonathan Millar UK Jürg Bähler UK Sergio Moreno Spain Pernilla Bjerling Sweden Jo Murray UK Fred Chang USA Toru Nakamura USA Gordon Chua Canada Chris Norbury UK Peter Espenshade USA Kunihiro Ohta Japan Kathy Gould USA Snezhka Oliferenko Singapore Juraj Gregan Austria Janni Petersen UK Edgar Hartsuiker UK Paul Russell USA Jacqueline Hayles UK Geneviève Thon Denmark Elena Hidalgo Spain Iva Tolic-Nørrelykke Germany Charlie Hoffman USA Elizabeth Veal UK Zoi Lygerou Greece Yoshi Watanabe Japan Henry Levin USA Jenny Wu France These abstracts may not be cited in bibliographies. Material contained herein should be treated as personal communication and should be cited as such only with the consent of the authors. Printed by SLS Print, London, UK Page 1 Poster Prize Judges: Coordinated by Sara Mole & Mike Bond UCL, UK Poster Prizes sponsored by UCL, London’s Global University Rosa Aligué Spain Hiroshi Murakami Japan José Ayté Spain Eishi Noguchi USA Hugh Cam USA Martin Převorovský Czech Republic Rafael Daga Spain Luis Rokeach Canada Jacob Dalgaard UK Ken Sawin UK Da-Qiao Ding Japan Melanie Styers USA Tim Humphrey UK Irene Tang USA Norbert Käufer Germany Masaru Ueno Japan Makoto Kawamukai Japan
    [Show full text]
  • Rare Variants in the Neuronal Ceroid Lipofuscinosis Gene MFSD8 Are Candidate Risk Factors for Frontotemporal Dementia
    Acta Neuropathologica (2019) 137:71–88 https://doi.org/10.1007/s00401-018-1925-9 ORIGINAL PAPER Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia Ethan G. Geier1 · Mathieu Bourdenx2 · Nadia J. Storm2 · J. Nicholas Cochran3 · Daniel W. Sirkis4 · Ji‑Hye Hwang1,6 · Luke W. Bonham1 · Eliana Marisa Ramos8 · Antonio Diaz2 · Victoria Van Berlo8 · Deepika Dokuru8 · Alissa L. Nana1 · Anna Karydas1 · Maureen E. Balestra5 · Yadong Huang5,6,7 · Silvia P. Russo1 · Salvatore Spina1,6 · Lea T. Grinberg1,6 · William W. Seeley1,6 · Richard M. Myers3 · Bruce L. Miller1 · Giovanni Coppola8 · Suzee E. Lee1 · Ana Maria Cuervo2 · Jennifer S. Yokoyama1 Received: 24 August 2017 / Revised: 23 October 2018 / Accepted: 24 October 2018 / Published online: 31 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Pathogenic variation in MAPT, GRN, and C9ORF72 accounts for at most only half of frontotemporal lobar degeneration (FTLD) cases with a family history of neurological disease. This suggests additional variants and genes that remain to be identifed as risk factors for FTLD. We conducted a case–control genetic association study comparing pathologically diag- nosed FTLD patients (n = 94) to cognitively normal older adults (n = 3541), and found suggestive evidence that gene-wide aggregate rare variant burden in MFSD8 is associated with FTLD risk. Because homozygous mutations in MFSD8 cause neuronal ceroid lipofuscinosis (NCL), similar to homozygous mutations in GRN, we assessed rare variants in MFSD8 for relevance to FTLD through experimental follow-up studies. Using post-mortem tissue from middle frontal gyrus of patients with FTLD and controls, we identifed increased MFSD8 protein levels in MFSD8 rare variant carriers relative to non-variant carrier patients with sporadic FTLD and healthy controls.
    [Show full text]
  • Batcure Newsletternewsletter Autumnautumn 20172017 Welcome to the Second Batcure Newsletter
    BATCureBATCure NewsletterNewsletter AutumnAUTUMN 20172017 Welcome to the second BATCure Newsletter. Our goal is to keep you informed about progress on the BATCure project and to provide an insight into the BATCure-funded research taking place at institutions across the European Union (EU). BATCure is a 3-year research project funded by the European Union’s Horizon 2020 Research and Innovation Programme that began in January 2016. The BATCure project consortium is comprised of fourteen institutions across the EU. These consist of ten leading scientific research groups, three companies and the Batten Disease Family Association (BDFA) who is leading part of the project and ensuring that the voice of patients and affected families is heard. Whilst BATCure focuses on the development of new therapies for CLN3, CLN6 and CLN7 diseases, it is hoped that the research results will ultimately be of benefit to patients with all forms of Batten disease. BATCure so far! Batten Disease Awareness Day – In August, the BATCure 18-month report was successfully submitted to the EU, and we are pleased to report that the project is in good shape as we reach the mid-way Friday 9th June 2017 point. Good progress has been made generating new models, tools and technologies in preparation for developing and testing emerging therapies. The BATCure consortium pulled together on Batten Disease The patient voice has also been represented with the BATCure Family Survey Awareness Day to help raise available online in 10 European languages from July to September 2017. The survey awareness of the disease across explored the perspective of EU families affected by all forms of Batten disease, Europe.
    [Show full text]
  • Identification of Two Novel Human Neuronal Ceroid Lipofuscinosis Genes
    Helsinki University Biomedical Dissertations No. 107 IDENTIFICATION OF TWO NOVEL HUMAN NEURONAL CEROID LIPOFUSCINOSIS GENES Eija Siintola Folkhälsan Institute of Genetics Department of Medical Genetics and Neuroscience Center University of Helsinki ACADEMIC DISSERTATION To be publicly discussed, with the permission of the Medical Faculty of the University of Helsinki, in the Folkhälsan lecture hall Arenan, Topeliuksenkatu 20, Helsinki, on May 16th 2008 at 12 noon. Helsinki 2008 Supervised by Professor Anna-Elina Lehesjoki, M.D., Ph.D. Folkhälsan Institute of Genetics and Neuroscience Center University of Helsinki Helsinki, Finland Reviewed by Professor Mark Gardiner, MD FRCPCH Department of Paediatrics and Child Health Royal Free and University College Medical School University College London London, UK Docent Marjo Kestilä, Ph.D. Department of Molecular Medicine National Public Health Institute Helsinki, Finland Official opponent Professor Kari Majamaa, M.D., Ph.D. Institute of Clinical Medicine University of Turku Turku, Finland ISSN 1457-8433 ISBN 978-952-10-4670-4 (paperback) ISBN 978-952-10-4671-1 (PDF) http://ethesis.helsinki.fi Helsinki University Print Helsinki 2008 To my family Table of contents TABLE OF CONTENTS LIST OF ORIGINAL PUBLICATIONS................................................................... 6 ABBREVIATIONS............................................................................................ 7 ABSTRACT .................................................................................................... 9
    [Show full text]
  • Identification of a Novel Mutation of the Cln6 Gene
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Copyright Service. sydney.edu.au/copyright IDENTIFICATION OF A NOVEL MUTATION IN THE CLN6 GENE (CLN6) IN SOUTH HAMPSHIRE SHEEP AFFECTED WITH NEURONAL CEROID LIPOFUSCINOSIS Izmira Farhana Mohd Ismail A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Veterinary Science University of Sydney Australia February, 2015 SUMMARY Neuronal ceroid lipofuscinoses (NCL/Batten disease) are a group of fatal inherited neurodegenerative diseases that occur in many species including humans, sheep, dogs and cattle.
    [Show full text]
  • Atypical Solute Carriers
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1346 Atypical Solute Carriers Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters EMELIE PERLAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0015-3 UPPSALA urn:nbn:se:uu:diva-324206 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 22 September 2017 at 10:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Carsten Uhd Nielsen (Syddanskt universitet, Department of Physics, Chemistry and Pharmacy). Abstract Perland, E. 2017. Atypical Solute Carriers. Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1346. 49 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0015-3. Solute carriers (SLCs) constitute the largest family of membrane-bound transporter proteins in humans, and they convey transport of nutrients, ions, drugs and waste over cellular membranes via facilitative diffusion, co-transport or exchange. Several SLCs are associated with diseases and their location in membranes and specific substrate transport makes them excellent as drug targets. However, as 30 % of the 430 identified SLCs are still orphans, there are yet numerous opportunities to explain diseases and discover potential drug targets. Among the novel proteins are 29 atypical SLCs of major facilitator superfamily (MFS) type. These share evolutionary history with the remaining SLCs, but are orphans regarding expression, structure and/or function. They are not classified into any of the existing 52 SLC families.
    [Show full text]