Hehmeyer, Jenks 2020 Biology Thesis Title
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Genomics of the Social Amoebae Dictyostelium Discoideum
Sucgang et al. Genome Biology 2011, 12:R20 http://genomebiology.com/2011/12/2/R20 RESEARCH Open Access Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum Richard Sucgang1†, Alan Kuo2†, Xiangjun Tian3†, William Salerno1†, Anup Parikh4, Christa L Feasley5, Eileen Dalin2, Hank Tu2, Eryong Huang4, Kerrie Barry2, Erika Lindquist2, Harris Shapiro2, David Bruce2, Jeremy Schmutz2, Asaf Salamov2, Petra Fey6, Pascale Gaudet6, Christophe Anjard7, M Madan Babu8, Siddhartha Basu6, Yulia Bushmanova6, Hanke van der Wel5, Mariko Katoh-Kurasawa4, Christopher Dinh1, Pedro M Coutinho9, Tamao Saito10, Marek Elias11, Pauline Schaap12, Robert R Kay8, Bernard Henrissat9, Ludwig Eichinger13, Francisco Rivero14, Nicholas H Putnam3, Christopher M West5, William F Loomis7, Rex L Chisholm6, Gad Shaulsky3,4, Joan E Strassmann3, David C Queller3, Adam Kuspa1,3,4* and Igor V Grigoriev2 Abstract Background: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. -
Zygote Gene Expression and Plasmodial Development in Didymium Iridis
DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-25-2019 Zygote gene expression and plasmodial development in Didymium iridis Sean Schaefer DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Schaefer, Sean, "Zygote gene expression and plasmodial development in Didymium iridis" (2019). College of Science and Health Theses and Dissertations. 322. https://via.library.depaul.edu/csh_etd/322 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Zygote gene expression and plasmodial development in Didymium iridis A Thesis presented in Partial fulfillment of the Requirements for the Degree of Master of Biology By Sean Schaefer 2019 Advisor: Dr. Margaret Silliker Department of Biological Sciences College of Liberal Arts and Sciences DePaul University Chicago, IL Abstract: Didymium iridis is a cosmopolitan species of plasmodial slime mold consisting of two distinct life stages. Haploid amoebae and diploid plasmodia feed on microscopic organisms such as bacteria and fungi through phagocytosis. Sexually compatible haploid amoebae act as gametes which when fused embark on an irreversible developmental change resulting in a diploid zygote. The zygote can undergo closed mitosis resulting in a multinucleated plasmodium. Little is known about changes in gene expression during this developmental transition. Our principal goal in this study was to provide a comprehensive list of genes likely to be involved in plasmodial development. -
A Revised Classification of Naked Lobose Amoebae (Amoebozoa
Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility. -
The Social Amoeba Polysphondylium Pallidum Loses Encystation And
Protist, Vol. 165, 569–579, September 2014 http://www.elsevier.de/protis Published online date 14 July 2014 ORIGINAL PAPER The Social Amoeba Polysphondylium pallidum Loses Encystation and Sporulation, but Can Still Erect Fruiting Bodies in the Absence of Cellulose 1 Qingyou Du, and Pauline Schaap College of Life Sciences, University of Dundee, MSI/WTB/JBC complex, Dow Street, Dundee, DD15EH, UK Submitted May 20, 2014; Accepted July 8, 2014 Monitoring Editor: Michael Melkonian Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose syn- thase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics. -
Methods Useful in Bringing Field Collections Of
1. USEFUL METHODS FOR BRINGING FIELD COLLECTIONS 1 OF MYXOMYCETES INTO AGAR CULTURE Rationale for getting a wide range of Myxomycetes into agar culture. Although Physarum and Didymium (Aldrich and Daniel, 1982) have served as excellent model systems for study, they give only a partial view of the biology of the Myxomycetes. There is a pressing need to get a wide range of Myxomycetes into agar culture to be used in the instruction of high school, undergraduate, graduate and post-graduate students as well as to provide material for student research projects. Further, these cultures will serve as primary research organisms in laboratories around the world. As Prof. Spiegel has noted, “Chemical sequences derived from a diversity of authentic cultures will make it easier for molecular systematists to build phylogenies. Also, such sequences when derived from cultures representing a wide taxonomic range, will make it easier to recognize myxomycete “chemical signatures” so that we can more confidently use sequences from species that will not go into culture. For those cultures that can be induced to go spore to spore, it will be possible for developmental geneticists to track changes in gene expression and to compare the patterns of gene expression across the Myxomycetes and with other organisms. Also sporulating cultures will allow the design of a range of experiments to determine the stability (phenotypic plasticity) of characters in the sporophore.” Since only morphological features of the sporophores are currently used to identify Myxomycetes, it behooves us to fully understand character variability under different culture conditions. 1 An overview of these methods is published in Haskins and Wrigley de Basanta (2008). -
Protistology an International Journal Vol
Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb. -
Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps). -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano -
Eukaryotic Microbiology Protistologists
The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 57(2), 2010 pp. 189–196 r 2010 The Author(s) Journal compilation r 2010 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2009.00466.x Invalidation of Hyperamoeba by Transferring its Species to Other Genera of Myxogastria ANNA MARIA FIORE-DONNO,a AKIKO KAMONO,b EMA E. CHAO,a MANABU FUKUIb and THOMAS CAVALIER-SMITHa aZoology Department, University of Oxford, South Parks Road, OX1 3PS Oxford, United Kingdom, and bThe Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo, Hokkaido 010-0819, Japan ABSTRACT. The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages— amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylo- genies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribo- somal (SSU or 18S rRNA) gene for 50 dark-spored (i.e. Stemonitida and Physarida) Myxogastria (including a new ‘‘Hyperamoeba’’/ Didymium sequence) and a 400-bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae. -
Genomics of Sorocarpic Amoebae
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1516 Genomics of Sorocarpic Amoebae SANEA SHEIKH ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9913-6 UPPSALA urn:nbn:se:uu:diva-320432 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, Norbyvägen 18D, Uppsala, Friday, 9 June 2017 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Assistant professor Matthew W. Brown (Department of Biological Sciences, Mississippi State University, USA). Abstract Sheikh, S. 2017. Genomics of Sorocarpic Amoebae. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1516. 45 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9913-6. Sorocarpy is the aggregation of unicellular organisms to form multicellular fruiting bodies (sorocarps). This thesis is about the two best-known groups of sorocarpic amoebae, Dictyostelids and Acrasids. Paper I describes assembly and analysis of a multigene dataset to identify the root of the dictyostelid tree. Phylogenetic analyses of 213 genes (conserved in all sequenced dictyostelid genomes and an outgroup) place the root between Groups 1+2 and 3+4 (now: Cavenderiaceae + Acytosteliaceae and Raperosteliaceae + Dictyosteliaceae). Resolution of the dictyostelid root made it possible to proceed with a major taxonomic revision of the group. Paper II focuses on the taxonomic revision of Dictyostelia based on molecular phylogeny and SSU ribosomal RNA sequence signatures. The two major divisions were treated at the rank of order as Acytosteliales ord. nov. and Dictyosteliales. The two major clades within each of these orders were given the rank of family. -
Diversity, Phylogeny and Phylogeography of Free-Living Amoebae
School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Diversity, phylogeny and phylogeography of free-living amoebae Ph.D. Thesis RNDr. Tomáš Tyml Supervisor: Mgr. Martin Kostka, Ph.D. Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice Specialist adviser: Prof. MVDr. Iva Dyková, Dr.Sc. Department of Botany and Zoology, Faculty of Science, Masaryk University České Budějovice 2016 This thesis should be cited as: Tyml, T. 2016. Diversity, phylogeny and phylogeography of free living amoebae. Ph.D. Thesis Series, No. 13. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 135 pp. Annotation This thesis consists of seven published papers on free-living amoebae (FLA), members of Amoebozoa, Excavata: Heterolobosea, and Cercozoa, and covers three main topics: (i) FLA as potential fish pathogens, (ii) diversity and phylogeography of FLA, and (iii) FLA as hosts of prokaryotic organisms. Diverse methodological approaches were used including culture-dependent techniques for isolation and identification of free-living amoebae, molecular phylogenetics, fluorescent in situ hybridization, and transmission electron microscopy. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce.