Environment and Predation Govern Fish Community Assembly In

Total Page:16

File Type:pdf, Size:1020Kb

Environment and Predation Govern Fish Community Assembly In Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016) 25, 1194–1205 RESEARCH Environment and predation govern fish PAPER community assembly in temperate streams Xingli Giam* and Julian D. Olden School of Aquatic and Fishery Sciences, ABSTRACT University of Washington, Seattle, Aim The elucidation of patterns and drivers of community assembly remains a WA 98105, USA fundamental issue in ecology. Past studies have focused on a limited number of communities at local or regional scales, thus precluding a comprehensive examination of assembly rules. We addressed this challenge by examining stream fish community assembly within numerous independent watersheds spanning a broad environmental gradient. We aimed to answer the following questions: (1) are fish communities structured non-randomly, and (2) what is the relative importance of environmental filtering, predator–prey interactions and interspecific competition in driving species associations? Location The conterminous USA. Methods We used null models to analyse species associations in streams. Non-random communities were defined as those where the summed number of segregated and aggregated species pairs exceeded the number expected by chance. We used species traits to characterize species dissimilarity in environmental requirements (ENV), identify potential predator–prey interactions (PRED) and estimate likely degree of competition based on species similarity in body size, feeding strategies and phylogeny (COMP). To evaluate the effect of environmental filtering, predation and competition on species associations, we related ENV, PRED and COMP to the degree of species segregation. Results The majority (75–85%) of watersheds had non-random fish communities. Species segregation increased with species dissimilarity in environmental requirements (ENV). An increase in competition strength (COMP) did not appear to increase segregation. Species pairs engaging in predator–prey interactions (PRED) were more segregated than non-predator– prey pairs. ENV was more predictive of the degree of species segregation than PRED. Main conclusions We provide compelling evidence for widespread non- random structure in US stream fish communities. Community assembly is governed largely by environmental filtering, followed by predator–prey interactions, whereas the influence of interspecific competition appears minimal. Applying a traits-based approach to continent-wide datasets provides a powerful approach for examining the existence of assembly rules in nature. *Correspondence: Xingli Giam, School of Keywords Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA. Assembly rules, co-occurrence, competition, ecological interactions, null E-mail: [email protected] models, North America, rivers, species traits. DOI: 10.1111/geb.12475 1194 VC 2016 John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/geb Community assembly in freshwater fishes INTRODUCTION The quest to understand how species communities assemble results of these studies are context specific or represent gen- remains one of the most fundamental, and often controver- eral assembly patterns for each taxonomic group. sial, topics in ecology. Since the pivotal publication of Jared Emerging from the burgeoning literature on species assem- Diamond’s ‘The assembly of species communities’ (Diamond, bly was a meta-analysis indicating that most animal com- 1975), intense investigation has centred on the operation of munities had fewer species co-occurrence than expected by environmental filtering, the definition of assembly rules, the chance (Gotelli & McCabe, 2002). Notably, that study importance of null models and the role of species neutrality reported that negative species co-occurrences were more (Hubbell 2001; Leibold et al., 2004). Although their relative common in warm-blooded than cold-blooded animals, and roles are debated, key processes involved in community that among cold-blooded taxa, fish communities were prob- assembly include biotic interactions in the form of interspe- ably randomly structured. Despite representing a significant cific competition and predation (M’Closkey, 1978; Connor & advance in the field, the approach used by Gotelli & McCabe Simberloff, 1979), environmental filtering (Heino, 2013; Kraft (2002) was complicated by the fact that C-scores (which et al., 2015) and historical effects such as dispersal limitation quantify the degree of segregation or aggregation between a owing to physical barriers (Dias et al., 2014). These processes pair of species) were averaged over all species pairs. Gotelli & can shape co-occurrence patterns among species pairs Ulrich (2012) suggested that this approach might miss poten- (Gotelli & McCabe, 2002; Veech, 2014) and in whole meta- tially important pairwise associations between particular pairs communities (Leibold & Mikkelson, 2002; Almeido-Neto of species. Thus, the particular processes contributing to et al., 2008; Presley et al., 2010) as well as produce patterns community structure require further examination. in phylogenetic or trait dispersion within local communities Here, we examined the patterns and drivers of fish com- (Webb et al., 2011; Liu et al., 2013). munity assembly across diverse taxonomies (500 species) and Ecological theory and empirical evidence suggest that com- geographies (c. 8000 stream locations) in the conterminous petition and predation can limit co-occurrences of interacting USA. Freshwater fishes are a good model for community species (i.e. negative species associations) (Diamond, 1975; assembly analyses because watersheds represent naturally Englund et al., 2009). By contrast, environmental filtering and bounded, independent regions within which species disperse historical processes can either: (1) increase species co- and interact (Leprieur et al., 2011). This facilitated a occurrences when two or more species are adapted to similar robust test of the assembly rule concept using numerous environments, have similar niche requirements or have similar independent sets of interacting communities across a broad biogeographical histories, or (2) limit co-occurrences when environmental gradient. By combining pairwise species different species are adapted to different environments, have co-occurrence analyses with trait-based inference of species different niche requirements or disperse from different histori- interactions (McGill et al., 2006; Frimpong & Angermeier, cal pools (Heino, 2013; Dias et al., 2014). 2010), we aimed to answer the following questions: (1) are Null models are commonly used to test whether an freshwater fish communities structured non-randomly within observed pattern of species co-occurrence is likely to be real watersheds, and (2) what processes (i.e. environmental filter- or the result of random processes (Gotelli & Graves, 1996). ing, predator–prey interactions, interspecific competition) In freshwater ecosystems, for instance, Matthews (1982) drive species associations? By doing this we hope to advance found the number of negative associations among stream the current understanding of the nature of assembly rules in fishes to be no more than that derived from random com- freshwater fish communities. munity assembly. By contrast, Winston (1995) found mor- phologically similar fish species to co-occur less often than METHODS random (inferring the importance of interspecific competi- Species community dataset tion), whereas Peres-Neto (2004) demonstrated that environ- mental filtering shaped fish communities in Brazilian We compiled a database of species occurrence for 7846 sites streams. Divergent mechanisms influencing fish communities (i.e. fish communities) across 1502 watersheds (i.e. HUC8 are also evident in lakes, where studies support both environ- hydrological units as defined by the United States Geological mentally mediated patterns (Jackson et al., 1992) and assem- Survey) in the conterminous USA (Fig. 1). The sites were bly rules resulting from biological interactions (Englund surveyed between 1990 and 2012 by US federal government et al., 2009). Regardless of taxonomy, the mechanisms (or agencies [e.g. the EPA and Regional Environmental Monitor- lack thereof) governing how communities are assembled vary ing and Assessment Program (EMAP and REMAP), the EPA in both time and space (Lockwood et al., 1997). However, National Rivers and Streams Assessment (NRSA), the USGS most existing studies have investigated species co-occurrence National Water Quality Assessment Program (NAWQA)], and community assembly rules in a single region or interact- state natural resource and environmental agencies and uni- ing metacommunity (e.g. Connor & Simberloff, 1979; Mat- versity researchers (see Appendix S1 in Supporting Informa- thews, 1982; Jackson et al., 1992; Winston, 1995; Peres-Neto, tion for full list). All surveys were designed to characterize 2004; Englund et al., 2009). It remains unclear whether the the entire fish community, which includes both native and Global Ecology and Biogeography, 25, 1194–1205, VC 2016 John Wiley & Sons Ltd 1195 X. Giam and J. D. Olden Figure 1 (a) Map of 7846 candidate sites/fish communities located within 1502 watersheds. We selected only those watersheds with at least 10 sites and 10 species (224 watersheds containing 3670 communities) for our null model analysis because of statistical power considerations. Abiotic and biotic interactions that could structure fish communities include: (b) environmental filtering – many species such as central stoneroller
Recommended publications
  • Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
    Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2.
    [Show full text]
  • Genetic Methods for Estimating the Effective Size of Cetacean Populations
    Genetic Methods for Estimating the Effective Size of Cetacean Populations Robin S. Waples Northwest Fisheries Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA ABSTRACT Some indirect (genetic) methods for estimating effective population size (N,) are evaluated for their suitability in studyingcetacean populations. The methodscan be grouped into those that (1) estimate current N,, (2) estimate long-term N, and (3) provide information about recent genetic bottlenecks. The methods that estimate current effective size are best suited for the analysis of small populations. and nonrandom sampling and population subdivision are probably the most serious sources of potential bias. Methods that estimate long-term N, are best suited to the analysis of large populations or entire species, may be more strongly influenced by natural selection and depend on accurate estimates of mutation or DNA base substitution rates. Precision of the estimates of N, is likely to be a limiting factor in many applications of the indirect methods. Keywords: genetics; assessment: cetaceans - general: evolution. INTRODUCTION Population size is one of the most important factors that determine the rate of various evolutionary processes, and it appears as a parameter in many of the fundamental equations of population genetics. However, knowledge merely of the total number of individuals (N) in a population is not sufficient for an accurate description of these evolutionary processes. Because of the influence of demographic parameters, two populations of the same total size may experience very different rates of genetic change. Wright (1931; 1938) developed the concept of effective population size (N,) as a way of summarising relevant demographic information so that one can predict the evolutionary consequences of finite population size (see Fig.
    [Show full text]
  • Ecological Principles and Function of Natural Ecosystems by Professor Michel RICARD
    Intensive Programme on Education for sustainable development in Protected Areas Amfissa, Greece, July 2014 ------------------------------------------------------------------------ Ecological principles and function of natural ecosystems By Professor Michel RICARD Summary 1. Hierarchy of living world 2. What is Ecology 3. The Biosphere - Lithosphere - Hydrosphere - Atmosphere 4. What is an ecosystem - Ecozone - Biome - Ecosystem - Ecological community - Habitat/biotope - Ecotone - Niche 5. Biological classification 6. Ecosystem processes - Radiation: heat, temperature and light - Primary production - Secondary production - Food web and trophic levels - Trophic cascade and ecology flow 7. Population ecology and population dynamics 8. Disturbance and resilience - Human impacts on resilience 9. Nutrient cycle, decomposition and mineralization - Nutrient cycle - Decomposition 10. Ecological amplitude 11. Ecology, environmental influences, biological interactions 12. Biodiversity 13. Environmental degradation - Water resources degradation - Climate change - Nutrient pollution - Eutrophication - Other examples of environmental degradation M. Ricard: Summer courses, Amfissa July 2014 1 1. Hierarchy of living world The larger objective of ecology is to understand the nature of environmental influences on individual organisms, populations, communities and ultimately at the level of the biosphere. If ecologists can achieve an understanding of these relationships, they will be well placed to contribute to the development of systems by which humans
    [Show full text]
  • Community Ecology
    Schueller 509: Lecture 12 Community ecology 1. The birds of Guam – e.g. of community interactions 2. What is a community? 3. What can we measure about whole communities? An ecology mystery story If birds on Guam are declining due to… • hunting, then bird populations will be larger on military land where hunting is strictly prohibited. • habitat loss, then the amount of land cleared should be negatively correlated with bird numbers. • competition with introduced black drongo birds, then….prediction? • ……. come up with a different hypothesis and matching prediction! $3 million/yr Why not profitable hunting instead? (Worked for the passenger pigeon: “It was the demographic nightmare of overkill and impaired reproduction. If you’re killing a species far faster than they can reproduce, the end is a mathematical certainty.” http://www.audubon.org/magazine/may-june- 2014/why-passenger-pigeon-went-extinct) Community-wide effects of loss of birds Schueller 509: Lecture 12 Community ecology 1. The birds of Guam – e.g. of community interactions 2. What is a community? 3. What can we measure about whole communities? What is an ecological community? Community Ecology • Collection of populations of different species that occupy a given area. What is a community? e.g. Microbial community of one human “YOUR SKIN HARBORS whole swarming civilizations. Your lips are a zoo teeming with well- fed creatures. In your mouth lives a microbiome so dense —that if you decided to name one organism every second (You’re Barbara, You’re Bob, You’re Brenda), you’d likely need fifty lifetimes to name them all.
    [Show full text]
  • Download Publication
    Caesar Kleberg A Publication of the Caesar Kleberg Wildlife ResearchTracks Institute CAESAR KLEBERG WILDLIFE RESEARCH INSTITUTE TEXAS A&M UNIVERSITY - KINGSVILLE 1 Caesar Kleberg Volume 5 | Issue 2 | Fall 2020 In This Issue 3 From the Director Tracks 4 Restoration: Just What Do You Mean By That? 8 The Unique Nature of Colonial-nesting Waterbirds 12 Texas Horned Lizard 8 Detectives Learn More About CKWRI The Caesar Kleberg Wildlife Research Institute at 16 Donor Spotlight: Texas A&M University-Kingsville is a Master’s and Mike Reynolds Ph.D. Program and is the leading wildlife research organization in Texas and one of the finest in the nation. Established in 1981 by a grant from the Caesar Kleberg 20 Fawn Survival and Foundation for Wildlife Conservation, its mission is Recruitment in South Texas to provide science-based information for enhancing the conservation and management of Texas wildlife. 23 Alumni Spotlight: J. Dale James Visit our Website www.ckwri.tamuk.edu Caesar Kleberg Wildlife Research Institute Texas A&M University-Kingsville 700 University Blvd., MSC 218 Kingsville, Texas 78363 4 (361) 593-3922 Follow us! Facebook: @CKWRI Twitter: @CKWRI Instagram: ckwri_official Cover Photo by iStock 2 Magazine Design and Layout by Gina Cavazos Caesar Kleberg From the Director The overarching mission of the Caesar Kleberg Wildlife Research Institute is to promote wildlife conservation. We do this primarily by conducting research and producing knowledge to benefit wildlife managers and land stewards. We also promote wildlife conservation by training the next generation of wildlife biologists Tracks through our graduate education programs. However, producing knowledge and trained professionals is not enough.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • National Wildlife Federation's Community Wildlife Habitat
    National Wildlife Federation’s Community Wildlife Habitat Certification Requirements To achieve certification through the National Wildlife Federation’s Community Wildlife Habitat program, you must create or restore wildlife habitat in your community and do education and outreach. First, a certain number of homes, schools and common areas must become National Wildlife Federation Certified Wildlife Habitats by providing the four basic elements that all wildlife need: food, water, cover and places to raise young. The NWF Certified Wildlife Habitat program also requires sustainable gardening practices such as using rain barrels, reducing water usage, removing invasive plants, using native plants and eliminating pesticides. These requirements are based on population – see chart below. Second, communities earn education and outreach points through a flexible checklist that includes educating citizens at community events, hosting a native plant sale, organizing a stream clean up, bringing new partners to the effort and hosting workshops – see pages 2 and 3. Property Certification Requirements: Minimum Habitat Sliding Scale Based on Activity / Type of Certification Points Certification Points Population Size For each home certified, including townhomes and apartments 1 20 500 or Less For each common area certified, including public parks, HOA common 40 501-1,000 areas, businesses, places of worship, farms, universities and municipal 3 100 1,001-5000 buildings 150 5,001-10,000 For each school certified as an NWF Schoolyard Habitat - Pre-K - 12 or 175 10,001-15,000 5 nature center 200 15,001-20,000 225 20,001-25,000 250 25,001-50,000 VERIFICATION: Each home or common area must be certified within 15 300 50,001-100,000 years of a community's registration date to count for points.
    [Show full text]
  • History of Insular Ecology and Biogeography - Harold Heatwole
    OCEANS AND AQUATIC ECOSYSTEMS- Vol. II - History of Insular Ecology and Biogeography - Harold Heatwole HISTORY OF INSULAR ECOLOGY AND BIOGEOGRAPHY Harold Heatwole North Carolina State University, Raleigh, North Carolina, USA Keywords: islands; insular dynamics; One Tree Island; Aristotle; Darwin; Wallace; equilibrium theory; biogeography; immigration; extinction; species-turnover; stochasticism; determinism; null hypotheses; trophic structure; transfer organisms; assembly rules; energetics. Contents 1. Ancient and Medieval Concepts: the Birth of Insular Biogeography 2. Darwin and Wallace: the Dawn of the Modern Era 3. Genetics and Insular Biogeography 4. MacArthur and Wilson: the Equilibrium Theory of Insular Biogeography 5. Documenting and Testing the Equilibrium Theory 6. Modifying the Equilibrium Theory 7. Determinism versus Stochasticism in Insular Communities 8. Insular Energetics and Trophic Structure Stability Glossary Bibliography Biographical Sketch Summary In ancient times, belief in spontaneous generation and divine creation dominated thinking about insular biotas. Weaknesses in these theories let to questioning of those ideas, first by clergy and later by scientists, culminating in Darwin's and Wallace's postulation of evolution through natural selection. MacArthur and Wilson presented a dynamic equilibrium model of insular ecology and biogeography that represented the number of species on an island as an equilibrium between immigration and extinction rates, as influenced by insular sizes and distances from mainlands. This model has been tested and found generally true but requiring minor modifications, such as accounting for disturbancesUNESCO affecting the equilibrium nu–mber. EOLSS There has been basic controversy as to whether insular biotas reflect deterministic or stochastic processes. It is likely that neither extreme SAMPLEis completely correct but rather CHAPTERS the two kinds of processes interact.
    [Show full text]
  • Integrating Community and Ecosystem-Based Approaches in Climate
    Integrating Community and Ecosystem-Based Approaches in Climate Change Adaptation i Responses This paper is the result of extensive discussions led by adaptation professionals coming from different backgrounds and facilitated by the Ecosystem and Livelihoods Adaptation Network (ELAN).ii ELAN is an innovative alliance between two conservation organisations (International Union for the Conservation of Nature [IUCN] and WWF) and two development organisations (CARE International and the International Institute for Environment and Development [IIED]). The objective of ELAN is to establish a global network to develop, evaluate, synthesize and share successful strategies for adapting to climate change, build capacity for such strategies to be assessed and implemented at national and sub-national levels, and advance policies and knowledge sharing platforms that will facilitate the scaling up of effective strategies. Two emerging approaches to adaptation have gained currency over the past few years, namely Community-based Adaptation (CBA) and Ecosystem-based Adaptation (EBA). Each has its specific emphasis, the first on empowering local communities to reduce their vulnerabilities, and the latter on harnessing the management of ecosystems as a means to provide goods and services in the face of climate change. In this paper, ELAN argues for a more truly “integrated approach” to adaptation that addresses and seeks to reconcile differences between CBA and EBA. ELAN has developed a conceptual framework for an approach to adaptation, which empowers
    [Show full text]
  • Effective Size of Populations with Heritable Variation in Fitness
    Heredity (2002) 89, 413–416 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy SHORT REVIEW Effective size of populations with heritable variation in fitness T Nomura Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kyoto 603–8555, Japan The effective size of monogamous populations with heritable zygotes are produced by random union of gametes, each variation in fitness is formulated, and the expression from conceptual male and female gametic pools. A con- obtained is compared with a published equation. It is shown venient equation for practical use is proposed, and the appli- that the published equation for dioecious populations is inap- cation is illustrated with the estimation of the effective size propriate for most animal and human populations, because of a rural human community in Japan. the derivation is implicitly based on the assumption that Heredity (2002) 89, 413–416. doi:10.1038/sj.hdy.6800169 Keywords: effective population size; random genetic drift; fitness; heritability; human population; animal population Introduction situations have been developed (Santiago and Caballero, 1995; Nomura, 1996, 1997; Wang, 1998; Bijma et al, 2000, The effective size of a population is a parameter central 2001). Only one extension to directional selection on fit- to understanding evolution in small populations, because ness was given by Nei and Murata (1966). Based on the the magnitude of this parameter determines the genetic approach of Robertson (1961), they worked out an equ- effects of both inbreeding and genetic drift (Falconer, ation for monoecious populations. They also extended 1989; Caballero, 1994). This parameter is also important their derivation to dioecious populations.
    [Show full text]
  • Chapter 11A Structuring Herbivore Communities
    CHAPTER 11A STRUCTURING HERBIVORE COMMUNITIES The role of habitat and diet SIPKE E. VAN WIEREN AND FRANK VAN LANGEVELDE Resource Ecology Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands E-mail: [email protected] Abstract. This chapter tries to address the question “Why are there so many species?” with a focus on the diversity of herbivore species. We review several mechanisms of resource specialisation between herbivore species that allow coexistence, ranging from diet specialisation, habitat selection to spatial heterogeneity in resources. We use the ungulate community in Kruger National Park to illustrate approaches in niche differentiation. The habitat overlap of the ungulate species is analysed, continued with the overlap in diet and the spatial heterogeneity in resources. This focus on the constraints on species’ exclusive resources is a useful tool for understanding how competitive interactions structure communities and limit species diversity. In explaining community structure of mobile animals, we argue that the existence of exclusive resources governed by spatial heterogeneity plays an important role. Trade- offs between food availability and quality, food availability and predation risk, or food and abiotic conditions (different habitat types) may constrain competitive interactions among mobile animals and allow the existence of exclusive resources. We propose that body mass of the animals considered is crucial here as animals with different body mass use different resources and perceive spatial heterogeneity in resources differently. A functional explanation of the role of body mass in the structuring of communities is still lacking while the study of how much dissimilarity is minimally needed to permit coexistence between strongly overlapping species is still in its infancy.
    [Show full text]
  • A Guide to Community-Based Habitat Restoration
    Why Restore? HABITAT DESTRUCTION AND DEGRADATION are among our most seri- ous environmental crises, causing species extinctions and threatening many remaining wildlife populations around the world. In California, f population growth and associated coastal development have caused In California, population the loss of over 90 percent of our wetlands. Although the passage of growth and associated environmental laws in the 1970s, including the California Coastal Act, coastal development have has helped to slow this decline, many remaining wetlands continue to caused the loss of over 90 be threatened by development and are degraded by poor water qual- percent of our wetlands. ity, invasive species, and other threats. In addition to making sure that f no more loss occurs, an important new challenge is to restore wetlands and other critical habitat wherever feasible. This guide describes how citizens can become involved in helping to improve and restore coastal wetlands and other coastal habitat in their communities. he california coastal commission’s community-Based t restoration and education program In 1972, the citizens of California passed Proposition 20, known as the “Save the Coast” initiative, which called for the formation of a statewide planning and regulatory agency named the California Coastal Zone Conservation Commission. Made permanent by the 1976 Coastal Act, and now known as the California Coastal Commission, the Commission has spent the past 30 years working to preserve and protect the resources of our 1,100 miles of coastline. The Commission’s Public Education Pro- gram complements the work of its regulatory and planning programs by empowering the public to become stewards of our coast and ocean and take environmentally positive action.
    [Show full text]