Oxidation Behavior of Two Nickel-Base Superalloys Used As Elevated Temperature Valves in Spark Ignited Engines and Diesel Exhaust Recirculation (Egr) Applications
Superalloys 2004 Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston TMS (The Minerals, Metals & Materials Society), 2004 OXIDATION BEHAVIOR OF TWO NICKEL-BASE SUPERALLOYS USED AS ELEVATED TEMPERATURE VALVES IN SPARK IGNITED ENGINES AND DIESEL EXHAUST RECIRCULATION (EGR) APPLICATIONS S. Sinharoy and S. L. Narasimhan Eaton Corporation - Engine Air Management Operations; 19218 B Drive South; Marshall, MI 49068, USA Keywords: Isothermal oxidation, Oxide formation kinetics, Internal combustion engine Abstract stoichiometric fuel-air combustion and EGR for emission reduction and by the use of turbo-boosting systems in land and air With trends towards higher performance, fuel economy and vehicles powered by ICEs. In this article, oxidation behavior of natural resource conservation, alternative fuels being considered two nickel-base superalloys, Nimonic 90TM* and Pyromet 751TM** by the automotive industry pose special demands on internal (similar to Inconel 751TM*), at 870 oC and 930 oC are presented combustion engine (ICE) exhaust valve materials. Similar and discussed. Inconel 751 is a commonly used nickel-base demands are expected in exhaust gas recirculation (EGR) systems exhaust valve superalloy used in both gasoline and diesel ICEs, for gasoline ICEs and now being introduced in heavy-duty diesel while Nimonic 90 has been primarily limited to heavy-duty diesel engines. With application of high temperature combustion fuels applications for higher fatigue strength. This study was such as propane and hydrogen, one of the key requirements of an undertaken to evaluate an appropriate alloy to meet the challenges exhaust valve material – oxidation resistance, is discussed in this of high temperature oxidation resistance demands of alternate fuel study for two nickel-base superalloys.
[Show full text]