Nephromyces, a Beneficial Apicomplexan Symbiont in Marine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948). -
0041085-15082018101610.Pdf
Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: The Journal of Antibiotics Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa41085 _____________________________________________________________ Paper: Zhang, B., Tang, S., Chen, X., Zhang, G., Zhang, W., Chen, T., Liu, G., Li, S., Dos Santos, L., et. al. (2018). Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. The Journal of Antibiotics http://dx.doi.org/10.1038/s41429-018-0080-9 _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China Binglin Zhang1,2,3, Shukun Tang4, Ximing Chen1,3, Gaoseng Zhang1,3, Wei Zhang1,3, Tuo Chen2,3, Guangxiu Liu1,3, Shiweng Li3,5, Luciana Terra Dos Santos6, Helena Carla Castro6, Paul Facey7, Matthew Hitchings7 and Paul Dyson7 1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. -
Field and Laboratory Studies on Four Species of Sea Squirts and Their
Global Journal of Science Frontier Research: B Chemistry Volume 16 Issue 2 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Field and Laboratory Studies on Four Species of Sea Squirts and their Larvae By Gaber Ahmed Saad & Abdullah Bedeer Hussein Dammam University, Saudi Arabia Abstract- The aim of this study was to characterize adult distribution with respect to light and analyze ovary contents in the four seasons of the year. The swimming behavior of Ciona intestinalis, Molgula manhattensis, Ascidella aspersa and Phallusia mammilata larvae against certain abiotic factors were commented. For the field data on adult distributions, one-way analysis of variance (ANOVA) was applied to test for differences in adult orientation, with surface orientation as a fixed factor. Two adult species (Ciona intestinalis and Molgula manhattensis) showed no orientation with respect to light while in the other two species (Ascidella aspersa and Phallusia mammilata) light exerted a significant effects on the orientation and density of individuals. To evaluate among the different species the level of gregariousness found in the field, the number of individuals per clump for each species has been compared using one-way ANOVA, with species as a fixed factor. Artificial heterologous inseminations were carried out. Keywords: field data - gregariousness - heterologous inseminations -adult orientation - larval settlement – phototaxis - geotaxis. GJSFR-B Classification : FOR Code: 069999 FieldandLaboratoryStudiesonFourSpeciesofSeaSquirtsandtheirLarvae Strictly as per the compliance and regulations of : © 2016. Gaber Ahmed Saad & Abdullah Bedeer Hussein. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Marine Biology
Marine Biology Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. --Manuscript Draft-- Manuscript Number: MABI-D-16-00297 Full Title: Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Article Type: S.I. : Invasive Species Keywords: ascidians, biofouling, biogeography, marine invasions, nonindigenous, non-native species, North America Corresponding Author: Christina Simkanin, Phd Smithsonian Environmental Research Center Edgewater, MD UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Smithsonian Environmental Research Center Corresponding Author's Secondary Institution: First Author: Christina Simkanin, Phd First Author Secondary Information: Order of Authors: Christina Simkanin, Phd Paul W. Fofonoff Kristen Larson Gretchen Lambert Jennifer Dijkstra Gregory M. Ruiz Order of Authors Secondary Information: Funding Information: California Department of Fish and Wildlife Dr. Gregory M. Ruiz National Sea Grant Program Dr. Gregory M. Ruiz Prince William Sound Regional Citizens' Dr. Gregory M. Ruiz Advisory Council Smithsonian Institution Dr. Gregory M. Ruiz United States Coast Guard Dr. Gregory M. Ruiz United States Department of Defense Dr. Gregory M. Ruiz Legacy Program Abstract: SSpecies introductions have increased dramatically in number, rate, and magnitude of impact in recent decades. In marine systems, invertebrates are the largest and most diverse component of coastal invasions throughout the world. Ascidians are conspicuous and well-studied members of this group, however, much of what is known about their invasion history is limited to particular species or locations. Here, we provide a large-scale assessment of invasions, using an extensive literature review and standardized field surveys, to characterize the invasion dynamics of non-native ascidians in the continental United States and Alaska. -
Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts
marine drugs Review Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts Xiaoju Dou 1,4 and Bo Dong 1,2,3,* 1 Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 4 College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China * Correspondence: [email protected]; Tel.: +86-0532-82032732 Received: 29 October 2019; Accepted: 25 November 2019; Published: 28 November 2019 Abstract: Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials. -
Aquatic Nuisance Species Management Plan
NORTH CAROLINA ria ut N e Mystery er Prim es S Wat ros in na e Ch il Aquatic ish F on Nuisance Li rn Sna Species Nor the kehead Marbled Cray fish Hydrill a h Spo fis tted Jelly MANAGEMENT PLAN NORTH CAROLINA AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Prepared by the NC Aquatic Nuisance Species Management Plan Committee October 1, 2015 Approved by: Steve Troxler, Commissioner North Carolina Department of Agriculture and Consumer Services Donald R. van der Vaart, Secretary North Carolina Department of Environmental Quality Gordon Myers, Executive Director North Carolina Wildlife Resources Commission TABLE OF CONTENTS Acknowledgements Executive Summary I. Introduction .....................................................................................................................................................................................................................1 The difference between Aquatic Invasive Species (AIS) and Aquatic Nuisance Species (ANS) ................................................................5 Plan Purpose, Scope and Development ............................................................................................................................................................................. 5 Aquatic Invasive Species Vectors and Impacts ............................................................................................................................................................... 6 Interactions with Other Plan ................................................................................................................................................................................................ -
Diseases of Opakapaka
Opakapaka Diseases of Opakapaka Hawai'i Institute of Marine Biology Michael L. Kent1, Jerry R. Heidel2, Amarisa Marie3, Aaron Moriwake4, Virginia Moriwake4, Benjamin Alexander4, Virginia Watral1, Christopher D. Kelley5 1Center for Fish Disease Research, http://www.oregonstate.edu/dept/salmon/, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331 2Director, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University Corvallis, OR 97331-3804 3Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331 4Hawaii Institute of Marine Biology, http://www.hawaii.edu/HIMB/, 46-007 Lilipuna Road, Kaneohe, HI 96744 5Hawaii Undersea Research Laboratory University of Hawaii, 1000 Pope Rd, MSB 303 Honolulu, HI 96744 Introduction Opakapaka (Pristipomoides filamentosus), a highly valued commercial deep-water snapper is under investigation at the University of Hawaii through support of Department of Land and Natural Resources. The purpose of this endeavor is to develop aquaculture methods for enhancement of wild stocks of this fish and related species (e.g., ehu, onaga) as well as development of this species of commercial aquaculture. The usual scenario for investigations or identification of serious diseases in aquaculture is that as the culture of a fish species expands, devastating economic and biological losses due to "new" or "unknown" diseases follow, and then research is conducted to identify their cause and develop methods for their control. In contrast, the purpose of this study was to provide a proactive approach to identify potential health problems that may be encountered in opakapaka before large-scale culture of this species is underway. A few diseases have already been recognized as potential problems for the culture of captive opakapaka. -
Conservation of Peripheral Nervous System Formation Mechanisms in Divergent Ascidian Embryos
RESEARCH ARTICLE Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos Joshua F Coulcher1†, Agne` s Roure1†, Rafath Chowdhury1, Me´ ryl Robert1, Laury Lescat1‡, Aure´ lie Bouin1§, Juliana Carvajal Cadavid1, Hiroki Nishida2, Se´ bastien Darras1* 1Sorbonne Universite´, CNRS, Biologie Inte´grative des Organismes Marins (BIOM), Banyuls-sur-Mer, France; 2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan Abstract Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system *For correspondence: (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some [email protected] differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong † These authors contributed levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation equally to this work of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than Present address: ‡Department for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific of Developmental and Molecular manner and unevenly within a network. Finally, considering that Molgula is divergent in our Biology, Albert Einstein College analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of Medicine, New York, United of separate evolution. States; §Toulouse Biotechnology Institute, Universite´de Toulouse, CNRS, INRAE, INSA, Toulouse, France Competing interests: The Introduction authors declare that no The formation of an animal during embryonic development is controlled by the exquisitely precise competing interests exist. -
Pedunculate Molgula Species (Ascidiidae, Molgulidae) from the French Antarctic Sector
Zootaxa 3920 (1): 171–197 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3920.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:C6BB0C5A-3317-4119-9C41-02F0EC487A9E Pedunculate Molgula species (Ascidiidae, Molgulidae) from the French Antarctic sector. Redescription and taxonomic revision FRANÇOISE MONNIOT1 & AGNÈS DETTAI2 1Muséum national d’Histoire naturelle, DMPA, 57 rue Cuvier Fr 75231 Paris cedex 05, France. E-mail: [email protected] 2Institut de systématique et Evolution, YSYEB-UMR 7205, UMPC EPHE Muséum national d’Histoire naturelle CP 26, 57 rue Cuvier 75231 Paris cedex 05 France. E-mail: [email protected] Abstract Following the Challenger Expedition in the southern Hemisphere, several international surveys have studied Antarctic as- cidians. Several pedunculate Molgula were successively described under various names. From the French part of the Ant- arctic continent and the Kerguelen area, numerous Molgula were recently collected. They are described here in different species, but closely allied. Their taxonomy is revised with an historical review of the most detailed publications and a link to the ancient names. Key words: Antarctic, Ascidians, Molgula species Introduction From the nineteenth century successive expeditions have investigated the benthic marine invertebrate fauna around the Antarctic continent. The “Challenger Expedition” (1873–1876) was the first to collect a large amount of invertebrates at different depths. Later, simultaneous surveys have also explored the southern ocean: the “Deutsch Sud-Polar Expedition” (1901–1903), the British “National Expedition” (1901–1904), the “Swedish Antarctic Expedition” (1901–1903), the “French Antarctic Expedition” (1903–1905), the “Australian Antarctic Expedition” (1911–1914). -
D070p001.Pdf
DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine. -
Phylum: Chordata
PHYLUM: CHORDATA Authors Shirley Parker-Nance1 and Lara Atkinson2 Citation Parker-Nance S. and Atkinson LJ. 2018. Phylum Chordata In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 477-490. 1 South African Environmental Observation Network, Elwandle Node, Port Elizabeth 2 South African Environmental Observation Network, Egagasini Node, Cape Town 477 Phylum: CHORDATA Subphylum: Tunicata Sea squirts and salps Urochordates, commonly known as tunicates Class Thaliacea (Salps) or sea squirts, are a subphylum of the Chordata, In contrast with ascidians, salps are free-swimming which includes all animals with dorsal, hollow in the water column. These organisms also ilter nerve cords and notochords (including humans). microscopic particles using a pharyngeal mucous At some stage in their life, all chordates have slits net. They move using jet propulsion and often at the beginning of the digestive tract (pharyngeal form long chains by budding of new individuals or slits), a dorsal nerve cord, a notochord and a post- blastozooids (asexual reproduction). These colonies, anal tail. The adult form of Urochordates does not or an aggregation of zooids, will remain together have a notochord, nerve cord or tail and are sessile, while continuing feeding, swimming, reproducing ilter-feeding marine animals. They occur as either and growing. Salps can range in size from 15-190 mm solitary or colonial organisms that ilter plankton. in length and are often colourless. These organisms Seawater is drawn into the body through a branchial can be found in both warm and cold oceans, with a siphon, into a branchial sac where food particles total of 52 known species that include South Africa are removed and collected by a thin layer of mucus within their broad distribution. -
Addendum A: Antiparasitic Drugs Used for Animals
Addendum A: Antiparasitic Drugs Used for Animals Each product can only be used according to dosages and descriptions given on the leaflet within each package. Table A.1 Selection of drugs against protozoan diseases of dogs and cats (these compounds are not approved in all countries but are often available by import) Dosage (mg/kg Parasites Active compound body weight) Application Isospora species Toltrazuril D: 10.00 1Â per day for 4–5 d; p.o. Toxoplasma gondii Clindamycin D: 12.5 Every 12 h for 2–4 (acute infection) C: 12.5–25 weeks; o. Every 12 h for 2–4 weeks; o. Neospora Clindamycin D: 12.5 2Â per d for 4–8 sp. (systemic + Sulfadiazine/ weeks; o. infection) Trimethoprim Giardia species Fenbendazol D/C: 50.0 1Â per day for 3–5 days; o. Babesia species Imidocarb D: 3–6 Possibly repeat after 12–24 h; s.c. Leishmania species Allopurinol D: 20.0 1Â per day for months up to years; o. Hepatozoon species Imidocarb (I) D: 5.0 (I) + 5.0 (I) 2Â in intervals of + Doxycycline (D) (D) 2 weeks; s.c. plus (D) 2Â per day on 7 days; o. C cat, D dog, d day, kg kilogram, mg milligram, o. orally, s.c. subcutaneously Table A.2 Selection of drugs against nematodes of dogs and cats (unfortunately not effective against a broad spectrum of parasites) Active compounds Trade names Dosage (mg/kg body weight) Application ® Fenbendazole Panacur D: 50.0 for 3 d o. C: 50.0 for 3 d Flubendazole Flubenol® D: 22.0 for 3 d o.