Production and Maximum Sustainable Yield of Fisheries Activity in Hulu Sungai Utara Regency
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices. -
Catch Per Unit Effort (CPUE)
RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/80 (En) TANGANYIKA GCP/RAF/271/FIN-TD/80 (En) January 1998 CATCH PER UNIT OF EFFORT (CPUE) STUDY FOR DIFFERENT AREAS AND FISHING GEARS OF LAKE TANGANYIKA by COENEN E.C., PAFFEN P. & E. NIKOMEZE FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1998 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on the Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (LTR) became fully operational in January 1992. It is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA) and the Arab Gulf Program for the United Nations Development Organization (AGFUND). LTR's objective is the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaire and Zambia). Particular attention is given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the build-up of effective coordination mechanisms to ensure full collaboration between the Governments concerned. -
Three Simple Rules for High Catches, High Profits and Healthy Ecosystems
Three simple rules for high catches, high profits and healthy ecosystems Position paper for the round-table discussion Towards a Sustainable Fishery Sector Block 2, Interactions between Fisheries and Nature, Wednesday 23 June 2021 by Rainer Froese, GEOMAR, Kiel, Germany, [email protected] Rule 1: Do not take out more than is regrown Taking out more than is regrown is called overfishing and will shrink the fished stock below levels that can produce the maximum longterm catch (MSY). Despite the legal obligation to end overfishing in 2020, the total allowed catches (TACs) for about 40% of the stocks with suitable data in the North Sea and adjacent waters constituted overfishing (1). Overfishing is stupid: with overfishing, more effort = money is spent to get lower catches than possible at lower value and with unnecessarily high impacts on the ecosystem. The lower value is caused by overfishing shrinking the mean size of the fish and smaller fish bring lower price per kg. Impact is unnecessary high because better catches can be obtained from non- overfished stocks with less gear deployment, therefore less by-catch and less physical impact. To end overfishing, catches have to be reduced for 1-4 years, depending on current stock size. The loss caused by such reduced catches is easily regained within a few years after rebuilt stock size allows for permanent high catches at e.g. 90% of the MSY level. The 90% MSY is needed for stability; with fishing at MSY, there is a 50% chance of shrinking the stock below the MSY level and thus reducing future catches. -
Structure and Dynamics of Demersal Assemblages on the Continental Shelf and Upper Slope Off Ghana, West Africa
MARINE ECOLOGY PROGRESS SERIES Vol. 220: 1–12, 2001 Published September 27 Mar Ecol Prog Ser Structure and dynamics of demersal assemblages on the continental shelf and upper slope off Ghana, West Africa Kwame A. Koranteng* Marine Fisheries Research Division, PO Box BT-62, Tema, Ghana ABSTRACT: Using two-way indicator species analysis and detrended correspondence analysis, species on the continental shelf and upper slope of Ghana were classified into 6 assemblages. The structure of the assemblages is determined primarily by depth and type of sediment on the seabed. There are clear faunal discontinuities around 30–40, 100 and 200 m depth. The dynamics of the assemblages are influenced by physico-chemical parameters of the water masses, mainly tempera- ture, salinity and dissolved oxygen, which are periodically modified by the seasonal coastal upwelling that occurs in the area. The observed changes in the composition and relative importance of species in the assemblages can be related to increased fishing activity and environmental forcing. KEY WORDS: Species assemblages · Structure and dynamics · Continental shelf and slope · Ghana Resale or republication not permitted without written consent of the publisher INTRODUCTION nental shelf using data from the Guinean Trawling Survey (Williams 1968). In fisheries, defining the aggregation of species in In the last 3 decades, significant changes have the ecosystem is the basis for managing species by the occurred in the biological and physical components of management unit approach (Tyler et al. 1982). Caddy the Gulf of Guinea marine ecosystem and in nearshore & Sharp (1986) also pointed out that such studies are forcing factors that could have an effect on species necessary to gain a better understanding of multi- aggregations in the sub-region (Koranteng 1998). -
Welcome to Fishbase
Welcome to FishBase FishBase contains different things for different people FishBase is an information system with key data on the biology of all fishes. Similar to an encyclopedia, FishBase contains different things for different people. For example, fisheries managers will dive into the largest existing compilation of population dynamics data; teachers and students will find numerous graphs illustrating basic concepts of fish biology; conservationists will use the lists of threatened fishes for any given country; policymakers may be interested in a chronological, annotated list of introductions to their country; research scientists, as well as funding agencies, will find it useful to gain a quick overview of what is known about a certain species; zoologists and physiologists will have the largest existing compilations of fish morphology, metabolism, gill area, brain size, eye pigment, or swimming speed at their fingertips; ecologists will likewise use data on diet composition, trophic levels, food consumption and predators as inputs for their models; the fishing industry will find proximate analyses, as well as processing recommendations for many marine species; anglers will enjoy a listing of all game fishes occurring in a particular country; and scholars interested in local knowledge will find more than 300,000 common names of fishes together with the language/culture in which they are used and comments on their etymology. Unexpected usage of FishBase The above text shows the usage of FishBase that we expected when we first published it on CD- ROM and later on the Internet, in the late 1990s. That assessment has been largely correct with regard to scientific use, which led to over 5000 citations of FishBase as counted by Google Scholar. -
Seafood Watch® Standard for Fisheries
1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion -
Potential Indicators and Reference Points for Good Environmental Status of Commercially Exploited Marine Fishes and Invertebrates in the German EEZ
Potential Indicators and Reference Points for Good Environmental Status of Commercially Exploited Marine Fishes and Invertebrates in the German EEZ Rainer Froese, Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, Germany, [email protected] Arlene Sampang, FishBase Information and Research Group FIN, Khush Hall, IRRI, Los Baños, Laguna, Philippines, [email protected] Cite as: Froese, R. and A. Sampang. 2013. Potential Indicators and Reference Points for Good Environmental Status of Commercially Exploited Marine Fishes and Invertebrates in the German EEZ. World Wide Web electronic publication, available from http://oceanrep.geomar.de/22079/ Note: This version of the text [MSFD_8.pdf] replaces an earlier version [MSFD_5.pdf] of September 2013. It fixes a misalignment of proxy recruits and spawners in the data-limited stocks and adds an indication of total biomass. It also adds an analysis of commercial catch data relative to stock abundance, to improve the estimation of mortality for the data-limited stocks. The concepts, overall results and conclusions are not affected by these changes. Abstract Indicators and reference points for assessing the good environmental status of commercially exploited marine fishes and invertebrates are presented, using 20 stocks from the German exclusive economic zone. New estimates of length-weight relationship, von Bertalanffy growth, length at 50% and 90% maturity, age at 50% maturity, and length and age where cohort biomass is maximum are presented for each stock. Twice the stock size below which recruitment may become impaired (SSBpa) is proposed as a proxy for the biomass that can produce the maximum sustainable yield, which is the lower limit reference point for stock size. -
Calculation and Interpretation of Catch-Per-Unit-Effort (CPUE) Indices
ISSN 1175-1 584 MINISTRY OF FISHERIES Te Tautiaki i nga tini a Tangaroa Calculation and interpretation of catch-per-unit-effort (CPUE) indices A. Durn S. J. Harley I. J. Doonan B. Bull New Zealand Fisheries Assessment Report 2000/1 February 2000 Calculation and interpretation of catch-per-unit-effort (CPUE) indices A. Dunn S. J. Harley I. J. Doonan B. Bull NIWA PO Box 14 901 Wellington New Zealand Fisheries Assessment Report 200011 February 2000 Published by Ministry of Fisheries Wellington 2000 0 Ministry of Fisheries 2000 Citation: Dunn, A., Harley, S.J., Doonan, I.J., & Bull, B. 2000: Calculation and interpretation of catch-per-unit effort (CPUE) indices. Nau Zealand Fisheries Assessment Report 2000/1.44 p. This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXE.CUTIVE SUMMARY Dunn, Amy Harley, SJ., Doonan, IJ. & Bull, B. 2000: Calculation and interpretation of catch-per-unit-effort (CPUE) indices. N.Z. Fisheries Assessment Report 2000/1.44 p. This report is in fulfilment of the requirements for Objective 4 of Project SAM 9801, Improved Methods for Fish Stock Assessment Modelling. The objective was 'To determine when catch and effort data should be used to construct biomass indices." This report reviews the literature, investigates the empirical relationship between a sample of observed CPUE and associated, but independent, biomass indices, and discusses guidelines for calculating and interpreting CPUE data. The assumption of a proportional relationship between CPUE and abundance has often been criticised, and ma.authors warn that the assumption of proportionality can be very misleading when estimating abundance. -
A Guide to Fisheries Stock Assessment from Data to Recommendations
A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing. That’s it. Modelers just use complicated (or not so complicated) math to iron out the details. A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Edited and designed by Kirsten Weir This publication was supported by the National Sea Grant NH Sea Grant College Program College Program of the US Department of Commerce’s Kingman Farm, University of New Hampshire National Oceanic and Atmospheric Administration under Durham, NH 03824 NOAA grant #NA16RG1035. The views expressed herein do 603.749.1565 not necessarily reflect the views of any of those organizations. www.seagrant.unh.edu Acknowledgements Funding for this publication was provided by New Hampshire Sea Grant (NHSG) and the Northeast Consortium (NEC). Thanks go to Ann Bucklin, Brian Doyle and Jonathan Pennock of NHSG and to Troy Hartley of NEC for guidance, support and patience and to Kirsten Weir of NHSG for edit- ing, graphics and layout. Thanks for reviews, comments and suggestions go to Kenneth Beal, retired assistant director of state, federal & constituent programs, National Marine Fisheries Service; Steve Cadrin, director of the NOAA/UMass Cooperative Marine Education and Research Program; David Goethel, commercial fisherman, Hampton, NH; Vincenzo Russo, commercial fisherman, Gloucester, MA; Domenic Sanfilippo, commercial fisherman, Gloucester, MA; Andy Rosenberg, UNH professor of natural resources; Lorelei Stevens, associate editor of Commercial Fisheries News; and Steve Adams, Rollie Barnaby, Pingguo He, Ken LaValley and Mark Wiley, all of NHSG. -
A Simple Method for Estimating MSY from Catch and Resilience
F I S H and F I S H E R I E S , 2013, 14, 504–514 A simple method for estimating MSY from catch and resilience Steven Martell1 & Rainer Froese2 1University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, USA and 2Helmholtz Centre for Ocean Research, GEOMAR, Du¨sternbroker Weg 20, 24105, Kiel, Germany Abstract Correspondence: The Law of the Sea requires that fish stocks are maintained at levels that can pro- Rainer Froese, GEOMAR duce the maximum sustainable yield (MSY). However, for most fish stocks, no esti- Du¨sternbroker Weg mates of MSY are currently available. Here, we present a new method for 20 estimating MSY from catch data, resilience of the respective species, and simple 24105 Kiel assumptions about relative stock sizes at the first and final year of the catch data Germany time series. We compare our results with 146 MSY estimates derived from full Tel.: +49 431 600 4579 stock assessments and find excellent agreement. We present principles for fisheries Fax: +49 431 600 management of data-poor stocks, based only on information about catches and 1699 MSY. E-mail: rfroese@ geomar.de Keywords Carrying capacity, data-poor stocks, harvest control rules, intrinsic rate of population increase, maximum sustainable yield Received 7 Feb 2012 Accepted 16 May 2012 Introduction 505 The need for simple methods 505 Outline of the Catch-MSY method 505 Material and Methods 505 Model and assumptions 505 Data sources 505 Results and Discussion 506 Applying the Catch-MSY method to Greenland halibut 506 Applying the Catch-MSY method to other -
Seaweeds Preferred by Herbivorous Fishes
J Appl Phycol DOI 10.1007/s10811-007-9290-4 Seaweeds preferred by herbivorous fishes G. Tolentino-Pablico & N. Bailly & R. Froese & C. Elloran Received: 21 April 2007 /Revised and Accepted: 5 November 2007 # Springer Science + Business Media B.V. 2007 Abstract Marine macrobenthic algae (or seaweeds), epi- (http://www.incofish.org/herbitool.php). The tool is intended phytic microalgae, and other aquatic plants constitute the to assist aquaculturists, conservationists and ecosystem- main food items of marine herbivorous fishes. About 5% of based fisheries managers. all fish species are herbivorous; only 30% of these are marine, most of them living in coral reefs. An analysis was Keywords Aquaculture . Diet composition . FishBase . performed on all the seaweeds that formed part of the natural Food items . Herbivores tool diet of these fishes, based on information contained in FishBase (http://www.fishbase.org). The results showed that many coral-reef-associated marine herbivorous fishes, such Introduction as the families Blennidae, Kyphosidae and Siganidae, fed selectively on filamentous and turf fleshy seaweeds, which Filamentous and turf seaweeds, Bacillariophyta, Dinophyceae, they prefer over calcareous coralline and encrusting species. Cyanobacteria, associated meiofauna and detritus are food In particular, Chlorophyceae of the genera Cladophora, resources for grazing herbivorous fishes (Ojeda and Muñoz Enteromorpha and Ulva were preferred by Scartichthys 1999;Crossmanetal.2001; Choat et al. 2002)andforma viridis (Blennidae), Girella spp. (Kyphosidae), Sarpa salpa complex assemblage called the epilithic algal matrix (EAM) (Sparidae), and Phaeophyceae in the genera Sargassum and (Wilson et al. 2003). The bulk of the diet consists mainly of Dictyota were preferred by Kyphosus spp. -
1 Misguided Claims of Overfishing in New South Wales: Comment On
Misguided Claims of Overfishing in New South Wales: Comment on “Empty Oceans Empty Nets. An evaluation of NSW fisheries catch statistics from 1940 to 2000” Robyn Forrest and Tony J Pitcher Fisheries Centre, University of British Columbia, Vancouver, Canada Summary A recent report characterises New South Wales fisheries as seriously mismanaged and unsustainable. While there have undoubtedly been declines in some fish populations in New South Wales, we are unable to substantiate these claims since the report lacks both consistency and rigour, analytical methods are not clearly described, fisheries science is not appropriately applied, and there is a failure to comprehend the management systems and responsibilities in Australian fisheries. In summary, the published report is so seriously flawed that it should not be used or quoted. Currently, there is much concern about the state of the world’s marine fish stocks and the ecosystems in which they are embedded (e.g., Pauly et al. 2003). While there is no doubt that some of the world’s fisheries have been poorly managed and/or overfished, statements describing failures of fisheries management programmes should be based on rigorous and defensible analysis if criticisms are to be credible. For example, a recent heavily-cited analysis of the decline of tuna populations (Myers and Worm 2003) may be based on incorrect assumptions (Walters 2003; Hampton et al . 2005). It is evident that careless interpretation of fisheries statistics increases confusion and may undermine the credibility of legitimate conservation efforts. A recent anonymous report (hereafter, “the report”) published in 2006 by the Hunter Community Environment Centre in New South Wales (NSW), Australia, makes strong claims of mismanagement and severe overfishing in the commercial and recreational fisheries of NSW (Hunter Community Environment Centre 2006).