Embargoes by Belligerent States

Total Page:16

File Type:pdf, Size:1020Kb

Embargoes by Belligerent States International Law Studies—Volume 15 International Law Documents The thoughts and opinions expressed are those of the authors and not necessarily of the U.S. Government, the U.S. Department of the Navy or the Naval War College. IV. EMBARGOES BY BELLIGERENT STATES. General.—Not only have the neutral States placed restrictions upon export but the belligerent States have established embargoes upon certain goods to certain ports, or even the transit of certain goods. Such embar- goes necessarily interfere seriously with the free move- ment of commerce. The extent to which ambargoes have been applied is illustrated in the British and German regulations. In addition to the embargoes, belligerents have issued proclamations in which were made known the names of persons or firms in certain countries to which exports might be made. BRITISH EMBARGOES. [Corrected according to the latest available information.] Department of State, August 28, 1915. Whereas by section 8 of "The customs'and inland revenue act, 1879," it is enacted that the exportation of arms, ammunition, and gunpowder, military and naval stores, and any articles which we shall judge capa- ble of being converted into or made useful in increasing the quantity of military or naval stores, provisions, or any sort of victual which may be used as food for man may be prohibited by proclamation; And whereas by section 1 of ''The exportation of arms act, 1900." it is enacted that we may by proclamation prohibit the exportation of all or any of the following articles, namely, arms, ammunition, mili- tary and naval stores, and any article which we shall judge capable of being converted into or made useful in increasing the quantity of arms, ammunition, or military or naval stores, to any country or place therein named whenever we shall judge such prohibition to be expe- dient in order to prevent such arms, ammunition, military or naval stores being used against our subjects or forces or against any forces engaged or which may be engaged in military or naval operations in cooperation with our forces; whereas section 1 of "'The customs (exportation prohibition An by ) act, 1914," it is enacted that section 8 of the aforesaid •Customs and inland revenue act, 1879," shall have effect whilst a state of war in 57 58 BELLIGERENT EMBARGOES. which we are engaged exists as if in addition to the articles therein mentioned there were included all other articles of every description; And whereas it is further enacted by section 2 of "The customs (exportation prohibition) act, 1914," that any proclamation or order in council made under section 8, as so amended, of "The customs and inland revenue act, 1879," may, whilst a state of war exists, be varied or added to by an order made by the Lords of the Council on the recom- mendation of the board of trade; And whereas by section 1 of "The customs (exportation restriction) act, 1914," it is enacted that section 1 of "The exportation of arms act, 1900," shall have effect whilst a state of war in which we are engaged exists as if, in addition to the articles therein mentioned, there were included all other articles of every description; And whereas it is further enacted by section 2 of "The customs (exportation restriction) act, 1914," that any proclamation made under section 1 of the exportation of arms act, 1900, may, whether the procla- mation was made before or after the passing of the act now in recital, be varied or added to by an order made by the Lords of the Council on the recommendation of the board of trade; And whereas a proclamation dated the 3d February, 1915, and vari- ous orders dated, respectively, the 2d and the 18th March, the 15th, the 21st, and the 26th April, the 6th and the 20th May, the 2d and the 24th June, and the 8th and the 19th July, 1915, prohibiting the expor- tation of certain articles therein referred to from the United Kingdom to certain or all destinations, have been issued in pursuance of the aforesaid powers; And whereas it is expedient that the said proclamation and orders should be consolidated, with amendments and additions, and that such proclamation and orders should be revoked; And whereas we have deemed it expedient to prohibit the exporta- tion of the articles hereinafter enumerated: Now, therefore, we have thought fit, by and with the advice of our Privy Council, to issue this our royal proclamation, declaring, and it is hereby declared, that the above-mentioned proclamation and orders be and the same are hereby revoked; And we have further thought fit, by and with the advice aforesaid, and in virtue and in exercise of the powers aforesaid, further to declare, and it is hereby declared, as follows: (A) That the exportation of the fol- Aircraft of all kinds, etc.—Continued. lowing goods be prohibited to all des- High-tensile steel tubes. tinations: Aeroplane instruments (aneroids, baro- Air craft of all kinds, including aeroplanes, graphs, revolution indicators), airships, and balloons and their corapo- Aeroplane turnbuckles. nent parts, together with accessories and Steel stampings, articles suitable for use in connection Aeroplane engines and parts, with air craft, including: Animals, pack, saddle, and draft, suit- Noninflammable "celluloid " sheet (or able for use in war. similar transparent material nonsolu- Cannon and other ordnance and machine ble in lubricating oil, petrol, or guns and parts thereof, water). Capsicum and oleo-resin of capsicum. Aeroplane dope. Carbons, suitable for searchlights. GENERAL BRITISH. 59 Carriages and mountings for cannon and Chemicals, etc.—Continued. other ordnance, and for machine guns Mercury. and parts thereof. Methylaniline. Cartridges, charges of all kinds, and their Neo-salvarsan. component parts. Nitric acid. Celluloid. Nitrotoluol. Chemicals, drugs, dyes and dyestufTs, me- Novocain. dicinal and pharmaceutical preparations, Opium and its preparations and alka- and tanning extracts, namely: loids. Aceto-celluloses. Paraffin, liquid medicinal. Acetone. Paraformaldehyde and trioxymethy- Acetylsalicylic acid (aspirin). lene. Alcohol, methylic. Paraldehyde. Ammonium nitrate, perchlorate and "Peptone Witte." and sulphocyanide. Phenacetin. Amyl acetate. Picric acid and its components. Anthracene oil and green oil. Potash, caustic. Antipyrine (phenazone). Potassium cyanide. Antitetanus serum. Potassium permanganate. Belladonna, its alkaloids and prepara- Protargol, not including silver protein- tions, including belladonna plaster. ate. Benzol. Pyridine. Caffeine and its salts. Saccharin (including "saxin"). Calcium acetate and all other metallic Salicylic acid, methyl salicylate, so- acetates. dium salicylate, and theobromine- Cantharides and its preparations. sodium salicylate. Carbolic acid. Salol. Carbon disulphide. Salvarsan. Chloral and its preparations, including Santonin and its preparations. chloramid. Sulphonal. Chlorates, perchlorates, and nitrates, Sulphur and spent oxide of sulphur. all metallic. Sulphur dioxide, liquefied. Coal-tar distillation products, being the Sulphuric acid. fractions of the distillation products Tanning, extracts for use in, the follow- of coal tar between benzol and cresol. ing: Coal-tar products for use in dye manu- Chestnut extract. facture, including aniline oil and ani- Oakwood extract. line salt. Thorium, oxide and salts of. Collodion. Thymol and its preparations. Cresol, and all preparations of cresol Toluol and mixtures containing toluol. (including cresylic acid) and nitro- Trephenyl phosphate. cresol (except saponified cresol). Trional. Cyanamide. Valonia. Diethylbarbituric acid (veronal) and Coal tar, crude. veronal sodium. Compasses, other than ships' compasses. Dimethylaniline. Copper and brass solid-drawn tubes. Dyes and dyestuffs manufactured from Cotton fabric, suitable for air craft. coal-tar products. Cotton waste of all descriptions. Emetin and its salts. Diamonds, rough, suitable for industrial Ergot of rye, not including liquid ex- purposes. tract or other medicinal preparations Explosives of all kinds. of ergot. Field glasses and telescopes. Eucaine hydrochlor. Firearms, rifled, of all kinds, and their Fusel oil (amyl alcohol). component parts. Gentian and its preparations. Flax fabric, suitable for air craft. Glycerine, crude and refined. Flax, raw. Henbane and its preparations. Forage and food which may be used for Hydroquinone. animals, namely: Indigo, natural. Beans, including haricot beans, Burma Ipecacuanha root. and Rangoon beans. Manganese, peroxide of. Brewers' and distillers' grains. GO BELLIGERENT EMBARGOES. Forage, etc. -Continued. Magnetos. Brewers' dried yeast. Meat, namely, beef and mutton, fresh or Cakes and meals, the following, refrigerated. namely: Mercury. Coconut and poonac cake. Oats. Compound cakes and meal. Periscopes. Cottonseed cake, decorticated and Projectiles of all kinds and their component undecorticated, and cottonseed parts. meal. Range finders and parts thereof. Gluten meal or gluten feed. Sheepgut. Linseed cake and meal. Silk cloth, silk braid, silk thread, suitable Maize germ meal. for cartridges. Maize meal and flour. Silk noils. Hay. Silk shantung in the piece. Lentils. Spirits, methylated. Maize. Spirits of a strength of not less than 43 Malt dust , malt flour, culms, sprouts, degrees above proof. or combings. Swords, bayonets, and other arms (not OfTals of corn and grain, including: being firearms) and parts thereof. Bran and pollard. Tarpaulins and wagon covers. Mill dust and screenings of all Wheat, wheat flour, and wheat meal. kinds. Wood, namely: Rice meal (or bran)
Recommended publications
  • Pdf, 11.42 Mb
    FOTO: SAMUEL PORTELA INSTITUTIONS PARTICIPATING IN THE OVERALL COORDINATION VALIDATION WORKSHOP TECHNICAL TEAM AD2M CAATINGA ASSOCIATION ADECE Daniel Fernandes ASSOCIAÇÃO CAATINGA Kelly Cristina Luana Ribeiro CAPOL Lucas Moura CARNAÚBA DO BRASIL Marília Nascimento CEROEPER Sandino Silva COETRAE Samuel Portela EMBRAPA SDA FAEC Marcílio Melo FETRAECE FIEC EMBRAPA Vicente de Paula Queiroga FONCEPI GIZ FAEC HARIBO Ivonisa Holanda INSS Ossian Dias Jucileide Nogueira MEMORIAL DA CARNAÚBA MAPA GIZ MMA Octávio Nogueira MPT-CE Louisa Lösing MPT-PI INSS MPT-RN Ruiter Lima NATURA Irisa Viana NATURAL WAX Rafael Ferreira NRSC NUTEC PONTES INDÚSTRIA DE CERA Alessandra Nascimento Souza de Oliveira RODOLFO G. MORAES - ROGUIMO Iêda Nadja Silva Montenegro SDA SEJUS MMA Daniel Barbosa SINDCARNAÚBA SRTE-CE UEBT SRTE-RN Ronaldo Freitas STDS Rodrigo de Próspero UEBT ESPECIALISTAS CONVIDADOS UECE Carolina Serra INVITED EXPERTS Jessika Sampaio GRAPHIC DESIGN AND LAYOUT Luana Ribeiro e Kelly Cristina FOTO: RENATO STOCKLER ACKNOWLEDGEMENTS This handbook was developed through a partnership between the Ministry of Agriculture, Livestock and Food Supply (MAPA), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the Associação Caatinga, within the framework of the Private Sector Action for Biodiversity Project, as part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative based on a decision taken by the Bundestag. Acronyms ABNT - Brazilian
    [Show full text]
  • Morpholine: a Glazing Agent for Fruits and Vegetables Coating/Waxing (IJSTE/ Volume 2 / Issue 11 / 119) with Glazing Agent
    IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016 ISSN (online): 2349-784X Morpholine: A Glazing Agent for Fruits and Vegetables Coating/Waxing Rupak Kumar Suman Kapur Research Scholar Senior Professor Department of Biological Sciences Department of Biological Sciences BITS-Pilani, Hyderabad Campus, Hyderabad-500078, India BITS-Pilani, Hyderabad Campus, Hyderabad-500078, India Abstract The saying “an apple a day keeps the doctor away” probably gives us the impression that apples are the healthiest fruits. But besides the fact that it rhymes, does it really have no adverse effects if we eat a bright red wax coated apple every day? Morpholine (C4H9NO) is a chemical used as emulsifier in the preparation of wax coatings for fruits and vegetables to help them last longer and remain fresh even during prolonged transit. Morpholine oleate is added to wax as it enables spreading wax in water based liquid for use as a protective coating to prevent contamination by pests and diseases. Morpholine alone does not appear to pose a health concern because morpholine itself is neither a carcinogen nor a teratogen and does not cause chronic toxicity. However, it is a precursor for potent carcinogenic nitrosamines. Keywords: Carcinogen, Emulsifier, Morpholine, Teratogen, Wax Coating ________________________________________________________________________________________________________ I. INTRODUCTION The practice of fruit/vegetable coating was accepted long before their associated chemistries were understood, and are still practiced till date. The first wax coating was applied to citrus fruits in 12th-13th centuries in China. Today, it has expanded rapidly for retaining quality of a wide variety of foods/vegetables, with total annual revenue exceeding $100 million [1].
    [Show full text]
  • The Tarsal Taste of Honey Bees: Behavioral and Electrophysiological Analyses
    ORIGINAL RESEARCH ARTICLE published: 04 February 2014 BEHAVIORAL NEUROSCIENCE doi: 10.3389/fnbeh.2014.00025 The tarsal taste of honey bees: behavioral and electrophysiological analyses Maria Gabriela de Brito Sanchez 1,2*, Esther Lorenzo 1,2, Songkun Su 3, Fanglin Liu 4,YiZhan3 and Martin Giurfa 1,2 1 Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169), Toulouse, France 2 University Paul-Sabatier, Research Center on Animal Cognition (UMR5169), Toulouse, France 3 College of Animal Sciences, Zhejiang University, Hangzhou, China 4 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China Edited by: Taste plays a crucial role in the life of honey bees as their survival depends on the Carmen Sandi, Ecole Polytechnique collection and intake of nectar and pollen, and other natural products. Here we studied Federale De Lausanne, Switzerland the tarsal taste of honey bees through a series of behavioral and electrophysiological Reviewed by: analyses. We characterized responsiveness to various sweet, salty and bitter tastants Judith Reinhard, University of Queensland, Australia delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that Fernando J. Guerrieri, Univesité stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded François Rabelais Tours, France different outcomes depending on the stimulation sequence. When sucrose was applied *Correspondence: first, thereby eliciting proboscis extension, no bitter substance could induce proboscis Maria Gabriela de Brito Sanchez, retraction, thus suggesting that the primacy of sucrose stimulation induced a central Centre de Recherches sur la Cognition Animale, Building 4R3, excitatory state. When bitter substances or water were applied first, sucrose stimulation Université de Toulouse, 31062 could still elicit proboscis extension but to a lower level, thus suggesting central inhibition Toulouse Cedex 9, France based on contradictory gustatory input on opposite tarsi.
    [Show full text]
  • Tutorial: How to Dye Black with Natural
    http://www.aurorasilk.com/ Tutorial: How To Dye Black with Natural Dyes by Cheryl Kolander. Excerpted from TrueFibers. Aurora Silk sells a full selection of natural dyes and mordants. For ideas on which dyes and which mordants to use, view our Natural Dye colour Chart. For more detailed dyeing recipes, read Brilliant Colours! by Cheryl Kolander. After recording the dry weight of your fiber, wet the fiber out in warm or hot water. STEP I: TANNIN 2 oz. tannic acid per pound of fiber (dry weight) OR: 4 oz. tara sawdust per pound of fiber, extracted twice OR: 3 oz Catechu (Cutch) extract per pound of fiber with optional 1/2 oz copper mordant 1. Dissolve tannic acid or catechu extract in hot water. 2. Heat the solution to approximately 200 F. 3. Remove from heat. 4. Enter the silk (or other fiber) that has been thoroughly wet out in warm to hot water. 5. Set to soak for at least 24 hrs, stirring occasionally. STEP II: IRON 1/2 to 1 oz Ferrous Sulphate per pound of fiber Use the lesser amount for fine silk yarn and soft wools. Use the greater amount for wild silk and other fibers. 1. Dissolve the iron in warm water. 2. Soak fiber in a mild soap solution about 15 minutes to neutralize the acid in the tannin (which couters the effect of the iron). This step is not necessary if you used Catechu for STEP I. 3. Add fiber to warm iron solution and soak for about 20 minutes. 4. Remove fiber from iron solution, wring excess solution from fiber, and hang to air 20 minutes to 1 hour.
    [Show full text]
  • Serious Risks Associated with Using Quinine to Prevent Or Treat Nocturnal Leg Cramps
    Serious risks associated with using Quinine to prevent or treat nocturnal leg cramps Quinine is FDA-approved for the label indications relating to leg ceived a dispensed prescription treatment of uncomplicated cramps and muscle pain.1 for quinine from U.S. outpatient Plasmodium falciparum malaria. Since 2006, there have been a retail pharmacies. In contrast, an It is not considered safe and ef- number of efforts to educate estimated 206,000 patients re- fective for the treatment or healthcare professionals about ceived a dispensed prescription prevention of leg cramps-- an these serious risks. These efforts for quinine in 2008.2 Cumula- "off-label" (non-FDA-approved) include labeling changes, adding tively from 2008 to 2011, use. Quinine is associated with general practice/family medi- serious and life-threatening ad- cine/doctor of osteopathy verse events, including specialties and internal medicine thrombocytopenia, specialties prescribed the major- hypersensitivity reac- ity of dispensed prescriptions for 3 tions, and quinine. Although use has de- QT prolongation. clined, the FDA remains concerned because the majority Thrombocytopenia associated of quinine use is associated with with the use of quinine for the off-label indications relating to treatment or prevention of leg leg cramps and muscle pain, and cramps includes serious adverse events continue immune thrombocyto- a boxed warning regarding he- to be reported. penic purpura matologic events associated with hemolytic uremic syn- off-label use of quinine, and The agency will continue to drome FDA and pharmaceutical indus- monitor quinine use and remind thrombotic thrombocyto- try communications. healthcare professionals about penic purpura with the serious risks associated with associated renal insuffi- Despite these efforts, awareness quinine in the preven- ciency.
    [Show full text]
  • Our Foreign Trade in Chemicals
    840 THE JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY Vol. 12, NO. 9 The deposits of salt in the United States are unimportant. If the Geological Survey and the Agricultural De- The country possesses no really considerable salt industry partment will make the search they will earn the ever- but is supplied so far as interior consumption is concerned to lasting gratitude of the farmer, and release the strangle- a small extent by brine springs. hold which European potash has on this country. The principal supplies, however, are derived from England, Pending that time, the only hope for normally priced and the shores of Spain and Portugal. The same remark potash is for the final successful development of the applies to Canada. processes for recovering potash from greensand or This statement was probably made about 1860 to feldspar, one very large plant for which is nearing com- 1870 and was doubtless true then, but in 1887 the pletion ih New Jersey, which will produce potash United States produced over I,IOO,OOO tons; in 1900, of the highest grades of all salts required. By the z,8oo,ooo; and in 1,913,4,800,000 tons. Likewise the sale of its valuable by-product at ordinary prices its price of common salt in 1866 was about $13.00per ton, potash cost will be less than nothing. and in 1887, $3.50 per ton at the mines, while in 1913 The Government’s potash search reminds me of the it got as low as $2.00 per ton. golfer who, after losing the hole, looking for his ball When the potash deposits which are surely there are in the heavy “rough” where his unscrupulous opponent developed, $5 or $IO per ton for 80 per cent “thought it went,” finds it too late nicely placed in the muriate of potash will be a high price, and no greater fair green where “there was no use looking as it benefit can accrue to the farmer than this.
    [Show full text]
  • Physical Composition, Proximate, Phytochemical and Impact of Coconut Oil on Lipid Profile of Albino Rats
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 13, Issue 7 Ser. I (July. 2020), PP 51-56 www.iosrjournals.org Physical Composition, Proximate, Phytochemical and Impact of Coconut Oil on Lipid Profile of Albino Rats Boisa .N1, Nwachoko .N2, Bull .O.S1 and James .F.A1 1(Department of Chemistry, Rivers State University,Nkpolu-Oroworokwu, Port Harcourt, Nigeria) 2(Department of Biochemistry, Rivers State University,Nkpolu-Oroworokwu, Port Harcourt, Nigeria) Abstract: Background: Coconut oil is a food supplement derived from the Cocos nucifera L of Cocoideae subfamily and Arecaceae family, the oil is obtained from coconut kernel and it is anatural functional oil. This study was undertaken to evaluate the physical, proximate, phytochemical composition and the effect of coconut oil on lipid profile indices of albino rats. Materials and Methods:The proximate analysis was according to AOCS, phytochemical analysis was carried out with GC-FID.Thirty-five (35) albino rats were used for the lipid profile evaluation. Two phases of experiment with four (4) groups of male albino rats comprising of five (5) animals each, averagely weighing 180g-200g were employed. Phase 1 of the experiment was treated with coconut oil supplemented diet, where rodent chow was mixed with coconut oil while phase 2 experimental animals were treated with coconut oil by oral gavage. Group 1 served as the control for both phases while group 2, 3 and 4 were treated with 3ml/kg, 6ml/kg and 12ml/kg of coconut oil respectively for 4weeks. Results: The physical examination of the samples showed that the appearance of hot press method of extraction of coconut oil is pale-yellow while the oil from cold press method of extraction is colourless.
    [Show full text]
  • How to Make an Electret the Device That Permanently Maintains an Electric Charge by C
    How to Make an Electret the Device That Permanently Maintains an Electric Charge by C. L. Strong Scientific America, November, 1960 Danger Level 4: (POSSIBLY LETHAL!!) Alternative Science Resources World Clock Synthesis Home --------------------- THE HISTORY OF SCIENCE IS A TREASURE house for the amateur experimenter. For example, many devices invented by early workers in electricity and magnetism attract little attention today because they have no practical application, yet these devices remain fascinating in themselves. Consider the so-called electret. This device is a small cake of specially prepared wax that has the property of permanently maintaining an electric field; it is the electrical analogue of a permanent magnet. No one knows in precise detail how an electret works, nor does it presently have a significant task to perform. George O. Smith, an electronics specialist of Rumson, N.J., points out, however, that this is no obstacle to the enjoyment of the electret by the amateur. Moreover, the amateur with access to a source of high-voltage current can make an electret at virtually no cost. "For more than 2,000 years," writes Smith, "it was suspected that the magnetic attraction of the lodestone and the electrostatic attraction of the electrophorus were different manifestations of the same phenomenon. This suspicion persisted from the time of Thales of Miletus (600 B.C.) to that of William Gilbert (A.D. 1600). After the publication of Gilbert's treatise De Magnete, the suspicion graduated into a theory that was supported by many experiments conducted to show that for every magnetic effect there was an electric analogue, and vice versa.
    [Show full text]
  • Curriculum Vitae John N. Sofos
    CURRICULUM VITAE JOHN N. SOFOS October, 2017 JOHN N. SOFOS CURRICULUM VITAE October, 2017 TABLE OF CONTENTS 1. Name, Current Position and Address Page 3 2. Educational Background Page 3 3. Professional Experience Page 3 4. Honors and Awards Page 3 5. Membership in Professional Organizations Page 4 6. Summary of Major Professional Contributions Page 5 7. Overview of Activities Page 5 8. Committee Service Page 11 9. Teaching Page 19 10. Graduate Students Page 19 11. Post-Doctoral Fellows/Visiting Scientists/Technicians/Research Associates Page 22 12. International Students/Scholars/Post-Docs/Visiting Scientists Page 23 13. Grants/Contracts/Donations Page 24 14. Additional Activities Page 30 15. List of Publications Page 47 A. Refereed Journal Articles Page 47 B. Books Page 69 C. Chapters in Books Page 69 D. Conference Proceedings Page 75 E. Invited Presentations Page 82 F. Published Abstracts and Miscellaneous Presentations Page 95 G. Bulletins Page 134 H. Popular Press Articles Page 138 I. Research Reports Page 139 J. Scientific Opinions Page 159 2 JOHN N. SOFOS CURRICULUM VITAE 1. Name, Current Position and Address: John N. Sofos, PhD University Distinguished Professor Emeritus Professor Emeritus Department of Animal Sciences Colorado State University Fort Collins, Colorado 80523-1171, USA Home: 1601 Sagewood Drive Fort Collins, Colorado 80525, USA Mobile Phone: + 1 970 217 2239 Home Phone: + 1 970 482 7417 Office Phone: + 1 970 491 7703 E-mail: [email protected] 2. Educational Background: B.S. Agriculture, Aristotle University of Thessaloniki, Greece, 1971 M.S. Animal Science (Meat Science), University of Minnesota, 1975 Ph.D.
    [Show full text]
  • Special Forest Product Markets in the Pacific Northwest with Global Implications
    Chapter 3 Special forest product markets in the Pacific Northwest with global implications Keith A. Blatner Associate Professor Department of Natural Resource Sciences Washington State University Pullman, WA 99164-6410 would like to first give credit to my colleague who has worked with me I on many of these projects. Bill Schlosser was my former graduate student at the University of Idaho. He is now at Michigan State University and shortly will be a USAID employee in Khabarovsk in the Russian Far East. He and I researched special forest products together for about 6 or 7 years. In the course of today’s presentation, I’m going to focus primarily on products from the Pacific Northwest—major products, their markets, and economic contribution. However, I’m going to digress at various times to show the international flavor of this market. There is a growing industry on the eastside of the Cascades, where I work. In fact, many of the products that are harvested on the eastside currently are marketed and processed through westside processors, a phenomenon that is slowly changing. There are large international markets for a variety of products. The special forest products industry consists of several specialized industries. The floral greens industry uses wild-harvested evergreen plant materials in floral arrangements. Typically, these plants are flexible and have long-lasting properties so they can be used in fresh or dried arrangements, often as background material. Moss is used as covering for the base of arrangements, or in pots or baskets. Christmas ornamentals are bough products, primarily cones, that are used in Christmas wreaths, swags, and door charms.
    [Show full text]
  • Plant Dye Identification in Japanese Woodblock Prints
    Plant Dye Identification in Japanese Woodblock Prints Michele Derrick, Joan Wright, Richard Newman oodblock prints were first pro- duced in Japan during the sixth Wto eighth century but it was not until the Edo period (1603–1868) that the full potential of woodblock printing as a means to create popular imagery for mass consumption developed. Known broadly as ukiyo-e, meaning “pictures of the float- ing world,” these prints depicted Kabuki actors, beautiful women, scenes from his- tory or legend, views of Edo, landscapes, and erotica. Prints and printed books, with or without illustrations, became an inte- gral part of daily life during this time of peace and stability. Prints produced from about the 1650s through the 1740s were printed in black line, sometimes with hand-applied color (see figure 1). These col- ors were predominantly mineral (inorganic) pigments supplemented by plant-based (organic) colorants. Since adding colors to a print by hand was costly and slowed pro- duction, the block carvers eventually hit upon a means to create a multicolor print using blocks that contained an “L” shaped groove carved into the corner and a straight groove carved further up its side in order to align the paper to be printed (see figure 2). These guides, called kento, are located Figure 1. Actors Sanjō Kantarō II and Ichimura Takenojō IV, (MFA 11.13273), about 1719 (Kyōho 4), designed by Torii Kiyotada I, and published by in the same location on each block. They Komatsuya (31.1 x 15.3 cm). Example of a beni-e Japanese woodblock ensure consistent alignment as each color print with hand-applied color commonly made from the 1650s to 1740s.
    [Show full text]
  • Design and Deliver Novel Meat Extract Concepts
    final report Project code: P.PSH.1165 Prepared by: Santanu Deb-Choudhury, Stephen Haines, Scott Knowles, Susanna Finlay-Smits, Paul Middlewood and Mark Loeffen AgResearch Limited, New Zealand Date published: 31st August 2019 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 1961 NORTH SYDNEY NSW 2059 Design and deliver novel meat extract concepts This project was co-funded by MLA Donor Company and AgResearch Ltd Strategic Science Investment fund (14485 - Added Value Foods). Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. P.PSH.1165 – Meat extract Executive summary We have investigated what is desirable and feasible for extracts from red meat and organs and designed a low fidelity minimum viable product (MVP) concept. Meat-derived flavours that stimulate the gustatory senses and evoke memories of home-cooked meals were identified as strongly desirable, especially with umami and kokumi taste enhancers, roasty overtones, a slightly sweeter taste profile and an enhanced feel of creaminess. To determine desirability, we explored the factors influencing the nutritional intake of older age New Zealanders as a model.
    [Show full text]