Slug Control

Total Page:16

File Type:pdf, Size:1020Kb

Slug Control march 2013 slug control FACT SHEET NORTHERN, SOUTHERN AND WESTERN REGIOns slug ideNTificaTiON aNd MaNageMeNT in the higher rainfall zones where zero till and stubble retention is practiced, slugs are an increasing problem. as no single control method will provide complete protection, an integrated approach is best. australian growers spend an average Pest species KEy Points $8.7 million annually on slug control. The main pest species in australia are the The incidence of slugs has increased grey field slug and the black keeled slug, but slugs need moisture and shelter with changes to cropping practices. the brown field slug has also been recorded to thrive. cool wet summers and cultivation and stubble-burning previously an abundance of stubble provide kept numbers down, but the widespread in high numbers. More than one species ideal conditions. adoption of minimum till and stubble may be present within a single paddock. Moisture availability is a key retention has provided slugs with more grey field slug or reticulated slug regulator of slug populations. favourable habitat. (Deroceras reticulatum) surface-active slug species such as the The grey field slug, or reticulated grey and brown field slug find crevices in The grey field or reticulated slug is slug, and black keeled slug are the the soil during dry summer conditions to 35 to 50 millimetres long and light grey to main pest species, but brown field avoid heat and drying out. They emerge slugs can also pose a serious threat. fawn in colour with dark brown mottling. when conditions are moist to breed and There are up to three generations a year. No single control method will be feed. grey field slugs are most active at it will generally breed in autumn and spring, completely effective; an integrated temperatures between 4°c and 20°c. however, if conditions are favourable this approach is needed. life cycle species will breed any time – a pair can produce up to 1000 eggs a year. it is slugs are a major pest of crops globally, slugs are hermaphrodites, therefore, both mainly surface active and is a major pest and have emerged as a serious pest for individuals of a mating pair lay eggs. of crops and pastures. australian grain growers in recent decades. They will breed whenever moisture and attacks on emerging crops can cause temperature conditions are suitable – Black keeled slug (Milax gagates) major economic losses, even when slug generally from mid-autumn to late spring. The black keeled slug is 40 to 60mm long numbers are relatively low. each pair will lay eggs in batches. and black or brown with a ridge down slugs will eat all parts of a crop plant, eggs are laid in moist soils and will hatch its back. This species can burrow up to however, seedlings are the most vulnerable within three to six weeks, dependent 20 centimetres underground to escape and this is the time when major economic on temperature. Juveniles look like smaller the heat. it is more problematic in drier losses can occur. versions of the adult. environments, such as south australia, a gRdc report, The current and potential PHOTO: Mic although it is widespread throughout south- costs of invertebrate pests in grain crops, eastern and Western australia. a breeding (see useful Resources) has found that in H pair can lay up to 200 eggs a year. terms of economic loss, slugs are the sixth ael Nas most damaging invertebrate pest for the Brown field slug (Deroceras australian grains industry, costing on average H panormitanum) $25.9 million in lost production across wheat, barley, oats and canola crops annually. The brown field slug is 25 to 35mm long, slugs are present in all major grain growing The eggs of the black keeled slug, laid and usually brown all over with no distinct regions of australia. They pose the biggest in a clod of moist soil. Slug eggs hatch markings. it is mainly surface active but threat to growers in the southern and within three to six weeks. A pair of black can burrow to shallow depths. it is more western regions, but are also a significant keeled slugs can lay up to 200 eggs common when pasture is a frequent part of problem for growers on Queensland’s per year, but some species are able to the crop rotation. a breeding pair can lay south eastern darling downs. produce up to 1000 eggs per year. up to 500 eggs per year. level 1, Tourism House | 40 Blackall street, Barton acT 2600 | PO Box 5367, Kingston acT 2604 | t +61 2 6166 4500 | F +61 2 6166 4599 | E [email protected] | W www.grdc.com.au The black keeled slug can burrow up PHOTO:s Mic to 20cm underground to escape the PHOTO: Mic heat and so it survives well in drier The grey field or reticulated slug is a major pest of Australian grain crops and pastures. environments. Its burrowing behaviour H It is 35 to 50mm long and ranges from light grey to fawn in colour with dark brown H also allows it to attack germinating ael Nas ael Nas mottling. Under favourable conditions, this species will breed any time. A pair can seedlings underground, making damage produce up to 1000 eggs a year. difficult to detect. H H Hedgehog slug (Arion intermedius) at the break of season, monitor for the slugs present. To counter this, sample more presence of slugs. The most effective time than 10 refuges per 10 hectares. a significant pest species in europe and to bait is at sowing, followed by rolling New Zealand, the hedgehog slug has been Where unexpected crop damage is to consolidate the seedbed. However, recorded in a number of high-rainfall (more occurring, inspect the area after 10pm this cultural practice may not fit with a than 600mm) locations. it is up to 25mm on a mild, calm night. zero-till operation, so assess the scale of long and grey in colour with a yellow foot. it the problem and make the management as well as looking for slugs, check for other is distinguished by its breathing pore at the decision appropriate to your operation. pests such as european earwigs or beetles front of the mantle (the section at the front that could cause similar damage. of the slug that covers the internal organs). Baits are most effective when paddocks are bare, so if there is retained stubble, control When monitoring is not practical from a crop damage may not be as good. time or resource perspective, an alternative option is to put out lines of bait to gauge slugs can be underestimated as pests during the winter months, continue to populations, especially in areas where slugs because they are nocturnal and shelter monitor for any plant damage during occurred previously. during dry conditions, and therefore are not crop emergence. Repeat baiting may be generally visible during daylight hours. required during crop establishment. Baiting control methods They will attack all plant parts but seedlings in spring is generally not effective because effective control involves a combination of are the most vulnerable crop stage and can there are ample alternative food sources. measures: chemical, cultural, and biological. suffer major economic damage. in Queensland, seedling canola, soybeans Populations as low as one grey field slug and sunflowers are the crops at greatest chemical control per square metre can inflict severe damage risk, particularly on creek flats where there Baiting is still the only chemical control option. on a canola crop at establishment. is zero till and overhead irrigation. apply baits after sowing and before crop grey and brown field slugs are mainly Monitoring emergence to protect emerging seedlings. surface active, requiring moist refuges at Three types of baits are registered for the the soil surface such as volunteer crop The foundation of any iPM program is control of slugs. plants and broadleaf weeds. monitoring, but accurate estimation of slug numbers is difficult because slugs are hard to 1. Baits based on metaldehyde (there are Black keeled slugs are a burrowing species, find, populations are often clumped and their many products available), some of which and can feed directly on germinating seed. This activity is dependent on moisture availability. often makes damage more difficult to detect are registered for all slugs and some for compared to the surface-feeding species. One monitoring method is to create surface grey field slugs only. Metaldehyde is a refuges in the form of terracotta paving schedule 5 poison and is highly toxic control approaches tiles, carpet squares or similar. These can to birds and mammals. spread evenly give an indication of slug activity and the and avoid heaping to avoid attracting No single method will provide complete relative number of slugs present. a 300mm off-target animals. control so an integrated pest management by 300mm refuge represents approximately (iPM) approach is required. 2. Baits based on methiocarb (Mesurol®), 1m2 when soil moisture is favourable (more which is registered for all slugs. than 25 per cent). concentrate monitoring By understanding the system’s complexity Methiocarb is highly toxic to carabid and working on pest control year round, a on areas where slugs have been a problem beetles, one of the few predators of reasonable level of control can be achieved. in the previous autumn in order to assess slugs in australia and New Zealand, population activity, especially after rainfall. in the summer months, remove refuges by which it kills by secondary poisoning. controlling weeds and managing stubble check the refuges early in the morning, 3. a bait based on iron edTa complex through grazing. as slugs seek shelter in the soil as it (Multiguard®), which is registered gets warmer.
Recommended publications
  • (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf
    Zootaxa 4758 (3): 501–531 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4758.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:2F2B0734-03E2-4D94-A72D-9E43A132D1DE Description of a new Peronia species (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf FATEMEH MANIEI1,3, MARIANNE ESPELAND1, MOHAMMAD MOVAHEDI2 & HEIKE WÄGELE1 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2Iranian Fisheries Science Research Institute (IFRO), 1588733111, Tehran, Iran. E-mail: [email protected] 3Corresponding author Abstract Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).
    [Show full text]
  • December 2011
    Ellipsaria Vol. 13 - No. 4 December 2011 Newsletter of the Freshwater Mollusk Conservation Society Volume 13 – Number 4 December 2011 FMCS 2012 WORKSHOP: Incorporating Environmental Flows, 2012 Workshop 1 Climate Change, and Ecosystem Services into Freshwater Mussel Society News 2 Conservation and Management April 19 & 20, 2012 Holiday Inn- Athens, Georgia Announcements 5 The FMCS 2012 Workshop will be held on April 19 and 20, 2012, at the Holiday Inn, 197 E. Broad Street, in Athens, Georgia, USA. The topic of the workshop is Recent “Incorporating Environmental Flows, Climate Change, and Publications 8 Ecosystem Services into Freshwater Mussel Conservation and Management”. Morning and afternoon sessions on Thursday will address science, policy, and legal issues Upcoming related to establishing and maintaining environmental flow recommendations for mussels. The session on Friday Meetings 8 morning will consider how to incorporate climate change into freshwater mussel conservation; talks will range from an overview of national and regional activities to local case Contributed studies. The Friday afternoon session will cover the Articles 9 emerging science of “Ecosystem Services” and how this can be used in estimating the value of mussel conservation. There will be a combined student poster FMCS Officers 47 session and social on Thursday evening. A block of rooms will be available at the Holiday Inn, Athens at the government rate of $91 per night. In FMCS Committees 48 addition, there are numerous other hotels in the vicinity. More information on Athens can be found at: http://www.visitathensga.com/ Parting Shot 49 Registration and more details about the workshop will be available by mid-December on the FMCS website (http://molluskconservation.org/index.html).
    [Show full text]
  • On the Distribution and Food Preferences of Arion Subfuscus (Draparnaud, 1805)
    Vol. 16(2): 61–67 ON THE DISTRIBUTION AND FOOD PREFERENCES OF ARION SUBFUSCUS (DRAPARNAUD, 1805) JAN KOZ£OWSKI Institute of Plant Protection, National Research Institute, W³adys³awa Wêgorka 20, 60-318 Poznañ, Poland (e-mail: [email protected]) ABSTRACT: In recent years Arion subfuscus (Drap.) is increasingly often observed in agricultural crops. Its abun- dance and effect on winter oilseed rape crops were studied. Its abundance was found to be much lower than that of Deroceras reticulatum (O. F. Müll.). Preferences of A. subfuscus to oilseed rape and 19 other herbaceous plants were determined based on multiple choice tests in the laboratory. Indices of acceptance (A.I.), palat- ability (P.I.) and consumption (C.I.) were calculated for the studied plant species; accepted and not accepted plant species were identified. A. subfuscus was found to prefer seedlings of Brassica napus, while Chelidonium maius, Euphorbia helioscopia and Plantago lanceolata were not accepted. KEY WORDS: Arion subfuscus, abundance, oilseed rape seedlings, herbaceous plants, acceptance of plants INTRODUCTION Pulmonate slugs are seroius pests of plants culti- common (RIEDEL 1988, WIKTOR 2004). It lives in low- vated in Poland and in other parts of western and cen- land and montane forests, shrubs, on meadows, tral Europe (GLEN et al. 1993, MESCH 1996, FRANK montane glades and sometimes even in peat bogs. Re- 1998, MOENS &GLEN 2002, PORT &ESTER 2002, cently it has been observed to occur synanthropically KOZ£OWSKI 2003). The most important pest species in such habitats as ruins, parks, cemeteries, gardens include Deroceras reticulatum (O. F. Müller, 1774), and and margins of cultivated fields.
    [Show full text]
  • Soil Pest Control Updates 2008
    Pest updates Recent research on control of soil dwelling pests 2008 PRG 2008 Pest control • Slugs • PCN Major pest slugs Tandonia/Milax spp (keeled slugs) Arion spp (roundback slugs) Deroceras reticulatum (grey field slug) Photograph courtesy of Bayer Keeled slugs Very important in potatoes: large species <7cm, predominantly subterranean, feed on tubers. Keel (characteristic mark) Tandonia budapestensis (also T. sowerbyi, Milax gagates) Photographs courtesy of Bayer Efficacy of metaldehyde at different temperatures Slug mortality Species 6 °C 8 °C 10 °C 16 °C 20 °C 22 °C 25 °C % % % % % % % Deroceras reticulatum 0 15 15 40 80 100 100 Arion hortensis 0 10 20 50 50 - - Milax sowerbyi 0 10 20 20 20 - - Dora Godan, Pest Slugs and Snails, Springer Verlag, Berlin, Heidelberg, New York Slug feeding behaviour Track of D. reticulatum (red line) during the course of the test. (Slug starved for 48 hours, observation period = 10 hours) green dots = Ferramol blue dots = Metarex A = Start position of the slug; E = End position of the slug X = resting position The test slug was placed in an enclosure, half way between a group of “Ferramol” (ferrous phosphate) pellets and a group of “Metarex” (metaldehyde) pellets. The slug’s movements were tracked for the next 10 hours and it was observed feeding on the “Ferramol” but not on the “Metarex” pellets. “Sluggo” (Ferrous phosphate) “Sluggo” The pellet size has now been reduced to give 50 baiting points per m2 at an application rate of 6 kg ha-1 Cost £2.00 – £2.50 per kg (depending upon order size) Fresh bait After 25 mm rain (Correct at January 2008) “Garland” is a garlic- “Garland”: slugs based product Application of Garland for control of slugs Slugs (grey field slug) were 120 collected from soil and placed in perspex 100 containers (22cm length, 11cm width, 8cm deep).
    [Show full text]
  • The Slugs of Florida (Gastropoda: Pulmonata)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-087 The Slugs of Florida (Gastropoda: Pulmonata)1 Lionel A. Stange2 Introduction washed under running water to remove excess mucus before placing in preservative. Notes on the color of Florida has a depauparate slug fauna, having the mucus secreted by the living slug would be only three native species which belong to three helpful in identification. different families. Eleven species of exotic slugs have been intercepted by USDA and DPI quarantine Biology inspectors, but only one is known to be established. Some of these, such as the gray garden slug Slugs are hermaphroditic, but often the sperm (Deroceras reticulatum Müller), spotted garden slug and ova in the gonads mature at different times (Limax maximus L.), and tawny garden slug (Limax (leading to male and female phases). Slugs flavus L.), are very destructive garden and greenhouse commonly cross fertilize and may have elaborate pests. Therefore, constant vigilance is needed to courtship dances (Karlin and Bacon 1961). They lay prevent their establishment. Some veronicellid slugs gelatinous eggs in clusters that usually average 20 to are becoming more widely distributed (Dundee 30 on the soil in concealed and moist locations. Eggs 1977). The Brazilian Veronicella ameghini are round to oval, usually colorless, and sometimes (Gambetta) has been found at several Florida have irregular rows of calcium particles which are localities (Dundee 1974). This velvety black slug absorbed by the embryo to form the internal shell should be looked for under boards and debris in (Karlin and Naegele 1958).
    [Show full text]
  • (5 Classes) Polyplacophora – Many Plates on a Foot Cephalopoda – Head Foot Gastropoda – Stomach Scaphopoda – Tusk Shell Bivalvia – Hatchet Foot
    Policemen Phylum Censor Gals in Scant Mollusca Bikinis! (5 Classes) Polyplacophora – Many plates on a foot Cephalopoda – Head foot Gastropoda – Stomach Scaphopoda – Tusk shell Bivalvia – Hatchet foot foot Typical questions for Mollusca •How many of these specimens posses a radula? •Which ones are filter feeders? •Which have undergone torsion? Detorsion? •Name the main function of the mantle? •Name a class used for currency •Which specimens have lungs? (Just have think of which live on land vs. in water……) •Name the oldest part of a univalve shell? Bivalve? Answers…maybe • Gastropods, Cephalopoda, Mono-, A- & Polyplacophora • Bivalvia (Scaphopoda….have a captacula) • Gastropods Opisthobranchia (sea hares & sea slugs) and the land slugs of the Pulmonata • Mantle secretes the shell • Scaphopoda • Pulmonata – their name gives this away • Apex for Univalve, Umbo for bivalve but often the terms are used interchangeably Anus Gills in Mantle mantle cavity Radula Head in mouth Chitons radula, 8 plates Class Polyplacophora Tentacles (2) & arms are all derived from the gastropod foot Class Cephalopoda - Octopuses, Squid, Nautilus, Cuttlefish…beak, pen, ink sac, chromatophores, jet propulsion……….dissection. Subclass Prosobranchia Aquatic –marine. Generally having thick Apex pointed shells, spines, & many have opercula. Gastropoda WORDS TO KNOW: snails, conchs, torsion, coiling, radula, operculum & egg sac Subclass Pulmonata Aquatic – freshwater. Shells are thin, rounded, with no spines, ridges or opercula. Subclass Pulmonata Slug Detorsion… If something looks strange, chances are…. …….it is Subclass Opisthobranchia something from Class Gastropoda Nudibranch (…or your roommate!) Class Gastropoda Sinistral Dextral ‘POP’ Subclass Prosobranchia - Aquatic snails (“shells”) -Have gills Subclass Opisthobranchia - Marine - Have gills - Nudibranchs / Sea slugs / Sea hares - Mantle cavity & shell reduced or absent Subclass Pulmonata - Terrestrial Slugs and terrestrial snails - Have lungs Class Scaphopoda - “tusk shells” Wampum Indian currency.
    [Show full text]
  • T.C. Süleyman Demirel Üniversitesi Fen Bilimleri
    T.C. SÜLEYMAN DEM İREL ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ KUZEYBATI ANADOLU’NUN KARASAL GASTROPODLARI ÜM İT KEBAPÇI Danı şman: Prof. Dr. M. Zeki YILDIRIM DOKTORA TEZ İ BİYOLOJ İ ANAB İLİMDALI ISPARTA – 2007 Fen Bilimleri Enstitüsü Müdürlü ğüne Bu çalı şma jürimiz tarafından …………. ANAB İLİM DALI'nda oybirli ği/oyçoklu ğu ile DOKTORA TEZ İ olarak kabul edilmi ştir. Ba şkan : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye: (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... ONAY Bu tez .../.../20.. tarihinde yapılan tez savunma sınavı sonucunda, yukarıdaki jüri üyeleri tarafından kabul edilmi ştir. ...../...../20... Prof. Dr. Fatma GÖKTEPE Enstitü Müdürü İÇİNDEK İLER Sayfa İÇİNDEK İLER......................................................................................................... i ÖZET........................................................................................................................ ix ABSTRACT.............................................................................................................. x TE ŞEKKÜR ............................................................................................................. xi ŞEK
    [Show full text]
  • Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know
    toxics Review Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know Endurance E Ewere 1,2 , Amanda Reichelt-Brushett 1 and Kirsten Benkendorff 1,3,* 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia; [email protected] (E.E.E.); [email protected] (A.R.-B.) 2 Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154 Benin City, Nigeria 3 National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia * Correspondence: [email protected] Abstract: The broad utilisation of neonicotinoids in agriculture has led to the unplanned contam- ination of adjacent terrestrial and aquatic systems around the world. Environmental monitoring regularly detects neonicotinoids at concentrations that may cause negative impacts on molluscs. The toxicity of neonicotinoids to some non-target invertebrates has been established; however, informa- tion on mollusc species is limited. Molluscs are likely to be exposed to various concentrations of neonicotinoids in the soil, food and water, which could increase their vulnerability to other sources of mortality and cause accidental exposure of other organisms higher in the food chain. This review examines the impacts of various concentrations of neonicotinoids on molluscs, including behavioural, physiological and biochemical responses. The review also identifies knowledge gaps and provides recommendations for future studies, to ensure a more comprehensive understanding of impacts from neonicotinoid exposure to molluscs. Keywords: non-target species; toxicity; biomarker; pesticide; bivalve; gastropod; cephalopod; Citation: Ewere, E.E; environmental concentration Reichelt-Brushett, A.; Benkendorff, K.
    [Show full text]
  • Gastropoda: Stylommatophora)1 John L
    EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs.
    [Show full text]
  • Slugs (Of Florida) (Gastropoda: Pulmonata)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-087 Slugs (of Florida) (Gastropoda: Pulmonata)1 Lionel A. Stange and Jane E. Deisler2 Introduction washed under running water to remove excess mucus before placing in preservative. Notes on the color of Florida has a depauparate slug fauna, having the mucus secreted by the living slug would be only three native species which belong to three helpful in identification. different families. Eleven species of exotic slugs have been intercepted by USDA and DPI quarantine Biology inspectors, but only one is known to be established. Some of these, such as the gray garden slug Slugs are hermaphroditic, but often the sperm (Deroceras reticulatum Müller), spotted garden slug and ova in the gonads mature at different times (Limax maximus L.), and tawny garden slug (Limax (leading to male and female phases). Slugs flavus L.), are very destructive garden and greenhouse commonly cross fertilize and may have elaborate pests. Therefore, constant vigilance is needed to courtship dances (Karlin and Bacon 1961). They lay prevent their establishment. Some veronicellid slugs gelatinous eggs in clusters that usually average 20 to are becoming more widely distributed (Dundee 30 on the soil in concealed and moist locations. Eggs 1977). The Brazilian Veronicella ameghini are round to oval, usually colorless, and sometimes (Gambetta) has been found at several Florida have irregular rows of calcium particles which are localities (Dundee 1974). This velvety black slug absorbed by the embryo to form the internal shell should be looked for under boards and debris in (Karlin and Naegele 1958).
    [Show full text]
  • A Biography of an Invasive Terrestrial Slug: the Spread, Distribution and Habitat of Deroceras Invadens
    A peer-reviewed open-access journal NeoBiota 23: 17–64 (2014)A biography of an invasive terrestrial slug, Deroceras invadens 17 doi: 10.3897/neobiota.23.7745 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net/ Advancing research on alien species and biological invasions A biography of an invasive terrestrial slug: the spread, distribution and habitat of Deroceras invadens John M.C. Hutchinson1, Heike Reise1, David G. Robinson2 1 Senckenberg Museum of Natural History at Görlitz, Am Museum 1, 02826 Görlitz, Germany 2 USDA APHIS PPQ National Malacology Laboratory, Academy of Natural Sciences, 1900 Franklin Parkway, Phila- delphia, PA 19103, USA Corresponding author: John M.C. Hutchinson ([email protected]) Academic editor: Ingolf Kühn | Received 17 April 2014 | Accepted 10 June 2014 | Published 2 September 2014 Citation: Hutchinson JMC, Reise H, Robinson DG (2014) A biography of an invasive terrestrial slug: the spread, distribution and habitat of Deroceras invadens. NeoBiota 23: 17–64. doi: 10.3897/neobiota.23.7745 Abstract The article reviews distribution records of Deroceras invadens (previously called D. panormitanum and D. caruanae), adding significant unpublished records from the authors’ own collecting, museum samples, and interceptions on goods arriving in the U.S.A. By 1940 D. invadens had already arrived in Britain, Denmark, California, Australia and probably New Zealand; it has turned up in many further places since, including remote oceanic islands, but scarcely around the eastern Mediterranean (Egypt and Crete are the exceptions), nor in Asia. Throughout much of the Americas its presence seems to have been previously overlooked, probably often being mistaken for D. laeve. New national records include Mexico, Costa Rica, and Ecuador, with evidence from interceptions of its presence in Panama, Peru, and Kenya.
    [Show full text]
  • 9:00 Am PLACE
    CARTY S. CHANG INTERIM CHAIRPERSON DAVID Y. IGE BOARD OF LAND AND NATURAL RESOURCES GOVERNOR OF HAWAII COMMISSION ON WATER RESOURCE MANAGEMENT KEKOA KALUHIWA FIRST DEPUTY W. ROY HARDY ACTING DEPUTY DIRECTOR – WATER AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMISSION ON WATER RESOURCE MANAGEMENT STATE OF HAWAII CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT DEPARTMENT OF LAND AND NATURAL RESOURCES ENGINEERING FORESTRY AND WILDLIFE HISTORIC PRESERVATION POST OFFICE BOX 621 KAHOOLAWE ISLAND RESERVE COMMISSION LAND HONOLULU, HAWAII 96809 STATE PARKS NATURAL AREA RESERVES SYSTEM COMMISSION MEETING DATE: April 27, 2015 TIME: 9:00 a.m. PLACE: Department of Land and Natural Resources Boardroom, Kalanimoku Building, 1151 Punchbowl Street, Room 132, Honolulu. AGENDA ITEM 1. Call to order, introductions, move-ups. ITEM 2. Approval of the Minutes of the June 9, 2014 N atural Area Reserves System Commission Meeting. ITEM 3. Natural Area Partnership Program (NAPP). ITEM 3.a. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $663,600 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Kapunakea Preserve Long Range Management Plan, TMK 4-4-7:01, 4-4-7:03, Lahaina, Maui. ITEM 3.b. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $470,802 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Pelekunu Long Range Management Plan, TMK 5-4- 3:32, 5-9-6:11, Molokai.
    [Show full text]