Search for Electron-Antineutrinos Associated with Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay*
Total Page:16
File Type:pdf, Size:1020Kb
Chinese Physics C Vol. 45, No. 5 (2021) 055001 Editors′ Suggestion Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay* F. P. An1 A. B. Balantekin2 H. R. Band3 M. Bishai4 S. Blyth5 G. F. Cao6 J. Cao6 J. F. Chang6 Y. Chang7 H. S. Chen6 S. M. Chen8 Y. Chen9,10 Y. X. Chen11 J. Cheng6 Z. K. Cheng10 J. J. Cherwinka2 M. C. Chu12 J. P. Cummings13 O. Dalager14 F. S. Deng15 Y. Y. Ding6 M. V. Diwan4 T. Dohnal16 J. Dove17 M. Dvořák16 D. A. Dwyer18 J. P. Gallo19 M. Gonchar20 G. H. Gong8 H. Gong8 W. Q. Gu4 J. Y. Guo10 L. Guo8 X. H. Guo21 Y. H. Guo22 Z. Guo8 R. W. Hackenburg4 S. Hans4,* M. He6 K. M. Heeger3 Y. K. Heng6 A. Higuera23 Y. K. Hor10 Y. B. Hsiung5 B. Z. Hu5 J. R. Hu6 T. Hu6 Z. J. Hu10 H. X. Huang24 X. T. Huang25 Y. B. Huang26 P. Huber27 D. E. Jaffe4 K. L. Jen28 X. L. Ji6 X. P. Ji4 R. A. Johnson29 D. Jones30 L. Kang31 S. H. Kettell4 S. Kohn32 M. Kramer18,32 T. J. Langford3 J. Lee18 J. H. C. Lee33 R. T. Lei31 R. Leitner16 J. K. C. Leung33 F. Li6 J. J. Li8 Q. J. Li6 S. Li31 S. C. Li27 W. D. Li6 X. N. Li6 X. Q. Li34 Y. F. Li6 Z. B. Li10 H. Liang15 C. J. Lin18 G. L. Lin28 S. Lin31 J. J. Ling10 J. M. Link27 L. Littenberg4 B. R. Littlejohn19 J. C. Liu6 J. L. Liu35 C. Lu36 H. Q. Lu6 J. S. Lu6 K. B. Luk32,18 X. B. Ma11 X. Y. Ma6 Y. Q. Ma6 C. Marshall18 D. A. Martinez Caicedo19 K. T. McDonald36 R. D. McKeown37,38 Y. Meng35 J. Napolitano30 D. Naumov20 E. Naumova20 J. P. Ochoa-Ricoux14 A. Olshevskiy20 H. -R. Pan5 J. Park27 S. Patton18 J. C. Peng17 C. S. J. Pun33 F. Z. Qi6 M. Qi39 X. Qian4 N. Raper10 J. Ren24 C. Morales Reveco14 R. Rosero4 B. Roskovec14 X. C. Ruan24 H. Steiner32,18 J. L. Sun40 T. Tmej16 K. Treskov20 W. -H. Tse12 C. E. Tull18 B. Viren4 V. Vorobel16 C. H. Wang7 J. Wang10 M. Wang25 N. Y. Wang21 R. G. Wang6 W. Wang10,38 W. Wang39 X. Wang41 Y. Wang39 Y. F. Wang6 Z. Wang6 Z. Wang8 Z. M. Wang6 H. Y. Wei4 L. H. Wei6 L. J. Wen6 K. Whisnant42 C. G. White19 H. L. H. Wong32,18 E. Worcester4 D. R. Wu6 F. L. Wu39 Q. Wu25 W. J. Wu6 D. M. Xia43 Z. Q. Xie6 Z. Z. Xing6 J. L. Xu6 T. Xu8 T. Xue8 C. G. Yang6 L. Yang31 Y. Z. Yang8 H. F. Yao6 M. Ye6 M. Yeh4 B. L. Young42 H. Z. Yu10 Z. Y. Yu6 B. B. Yue10 S. Zeng6 Y. Zeng10 L. Zhan6 C. Zhang4 F. Y. Zhang35 H. H. Zhang10 J. W. Zhang6 Q. M. Zhang22 X. T. Zhang6 Y. M. Zhang10 Y. X. Zhang40 Y. Y. Zhang35 Z. J. Zhang31 Z. P. Zhang15 Z. Y. Zhang6 J. Zhao6 L. Zhou6 H. L. Zhuang6 J. H. Zou6 (Daya Bay Collaboration) 1Institute of Modern Physics, East China University of Science and Technology, Shanghai 200237 2University of Wisconsin, Madison, Wisconsin 53706 3Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520 4Brookhaven National Laboratory, Upton, New York 11973 5Department of Physics, National Taiwan University, Taipei 6Institute of High Energy Physics, Beijing 100049 7National United University, Miao-Li 8Department of Engineering Physics, Tsinghua University, Beijing 100084 9Shenzhen University, Shenzhen 518060 10Sun Yat-Sen (Zhongshan) University, Guangzhou Received 27 June 2020; Accepted 14 September 2020; Published online 2 November 2020 * Daya Bay is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal govern- ment, the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory of Particle Physics and Particle Irradiation (Shandong University), the Ministry of Education, Shanghai Laboratory for Particle Physics and Cosmology, the Research Grants Council of the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program for Research of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the Al- fred P. Sloan Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute of Nuclear Research in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Pro- gram. ©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd 055001-1 F. P. An, A. B. Balantekin, H. R. Band et al. Chin. Phys. C 45, 055001 (2021) 11North China Electric Power University, Beijing 102206 12Chinese University of Hong Kong, Hong Kong 999077 13Siena College, Loudonville, New York 12211 14Department of Physics and Astronomy, University of California, Irvine, California 92697 15University of Science and Technology of China, Hefei 230026 16Charles University, Faculty of Mathematics and Physics, Prague 17Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 18Lawrence Berkeley National Laboratory, Berkeley, California 94720 19Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 20Joint Institute for Nuclear Research, Dubna, Moscow Region 21Beijing Normal University, Beijing 100875 22Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 23Department of Physics, University of Houston, Houston, Texas 77204 24China Institute of Atomic Energy, Beijing 102413 25Shandong University, Jinan 250100 26Guangxi University, Nanning 530004 27Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061 28Institute of Physics, National Chiao-Tung University, Hsinchu 29Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 30Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122 31Dongguan University of Technology, Dongguan 523808 32Department of Physics, University of California, Berkeley, California 94720 33Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong 999077 34School of Physics, Nankai University, Tianjin 300071 35Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai 200240 36Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 37California Institute of Technology, Pasadena, California 91125 38College of William and Mary, Williamsburg, Virginia 23187 39Nanjing University, Nanjing 210093 40China General Nuclear Power Group, Shenzhen 518028 41College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 42Iowa State University, Ames, Iowa 50011 43Chongqing University, Chongqing 401331 *Now at: Department of Chemistry and Chemical Technology, Bronx Community College, Bronx, New York 10453 Abstract: The establishment of a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using the data collected from December 2011 to August 2017, a search was per- formed for electron-antineutrino signals that coincided with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of ±10, ±500, and ±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) of the electron-antineutrino fluence of (1.13 − 2.44)×1011 cm−2 at 5 MeV to 8.0×107 cm−2 at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be (5.4 − 7.0)×109 cm−2 for the three time windows. Keywords: gravitational waves, electron-antineutrinos, fluence, upper limit DOI: 10.1088/1674-1137/abe84b I. INTRODUCTION has transitioned into another new and exciting era of ex- ploration. The detected GW170817 [7] was temporally The direct observation of gravitational waves (GWs) correlated with the GRB170817A [8], detected by the provides an important probe for investigating the dynam- Fermi-GBR 1.7 s after the proposed coalescence of two ical origin of high-energy cosmic transients [1]. In 1987, neutrino signals were observed in the Super-Kamiokande neutron stars (NSs), providing the first direct evidence of [2], IMB [3], and Baksan [4] experiments, 7 hours before a link between NS mergers and gamma-ray bursts the optical observation of a type II core-collapse super- (GRBs). The search for coincident signals and the explor- nova in the Large Magellanic Cloud. After the first detec- ation of the dynamics of astronomical sources through tion of GWs [5] at the Advanced Laser Interferometer distinct channels may facilitate the validation of compet- Gravitational-wave Observatory (LIGO) [6], astronomy ing model descriptions, thus expanding our understand- 055001-2 Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914... Chin. Phys. C 45, 055001 (2021) ing of the universe [1, 9, 10]. Therefore, studies on joint II. EXPERIMENT AND NEUTRINO DETECTION detection of GW events that coincide with neutrino sig- The Daya Bay Reactor Neutrino Experiment is de- nals have received substantial attention. signed to measure the electron-antineutrino disappear- The merging of two black holes (BHs), two NSs, or a ance with ν¯e emitted by the six Daya Bay reactor cores.