Precision Pulsar Timing with the ORT and the GMRT and Its Applications in Pulsar Astrophysics

Total Page:16

File Type:pdf, Size:1020Kb

Precision Pulsar Timing with the ORT and the GMRT and Its Applications in Pulsar Astrophysics J. Astrophys. Astr. (2018) 39:51 © Indian Academy of Sciences https://doi.org/10.1007/s12036-018-9549-y Review Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics BHAL CHANDRA JOSHI1,∗ , PRAKASH ARUMUGASAMY1 , MANJARI BAGCHI3,12 , DEBADES BANDYOPADHYAY4, AVISHEK BASU1 , NEELAM DHANDA BATRA5,6 , SURYARAO BETHAPUDI7 , ARPITA CHOUDHARY3 , KISHALAY DE8 ,L.DEY2, A. GOPAKUMAR2, Y. GUPTA1 , M. A. KRISHNAKUMAR1,9 , YOGESH MAAN10 , P. K. MANOHARAN1,9 , ARUN NAIDU11, RANA NANDI14 , DHRUV PATHAK3,12 , MAYURESH SURNIS13,15 and ABHIMANYU SUSOBHANAN2 1National Centre for Radio Astrophysics (Tata Institute of Fundamental Research), Post Bag No 3, Ganeshkhind, Pune 411 007, India. 2Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Mumbai 400 005, India. 3The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600 113, India. 4Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India. 5Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. 6Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Shameerpet Mandal, Hyderabad 500 078, India. 7Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502 285, India. 8Cahill Centre for Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. 9Radio Astronomy Centre (NCRA-TIFR), Ooty, India. 10ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands. 11Mcgill Space Institute, McGill University, Montreal, Canada. 12Homi Bhabha National Institute Training School Complex, Anushakti Nagar, Mumbai 400 094, India. 13Department of Physics and Astronomy, West Virginia University, P. O. Box 6315, Morgantown, WV, USA. 14Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005, India. 15Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV, USA. ∗Corresponding author. E-mail: [email protected] MS received 12 July 2018; accepted 16 August 2018; published online 29 August 2018 Abstract. Radio pulsars show remarkable clock-like stability, which make them useful astronomy tools in experiments to test equation of state of neutron stars and detecting gravitational waves using pulsar timing techniques. A brief review of relevant astrophysical experiments is provided in this paper highlighting the current state-of-the-art of these experiments. A program to monitor frequently glitching pulsars with Indian radio telescopes using high cadence observations is presented, with illustrations of glitches detected in this program, including the largest ever glitch in PSR B0531+21. An Indian initiative to discover sub-μHz gravitational waves, called Indian Pulsar Timing Array (InPTA), is also described briefly, where time-of-arrival uncertainties and post-fit residuals of the order of μs are already achievable, comparable to other international pulsar timing array experiments. While timing the glitches and their recoveries are likely to provide constraints on the structure of neutron stars, InPTA will provide upper limits on sub-μHz gravitational waves apart from auxiliary pulsar science. Future directions for these experiments are outlined. Keywords. Equation of state—gravitational waves—pulsars: general—stars: neutron. 51 Page 2 of 10 J. Astrophys. Astr. (2018) 39:51 1. Introduction of the paper is as follows. The pulsar timing technique is briefly described in section 2. Current constraints on Highly magnetized rotating neutron stars, discovered neutron star structure and EoS are discussed in sec- first as radio pulsars emitting a train of narrow periodic tion 3 followed by a description of the glitch monitoring pulses (Hewish et al. 1968), provide excellent celes- program using the ORT and the uGMRT and its pre- tial clocks, primarily due to their massive and compact liminary results. A brief review of PTA experiments is nature (mass ∼ 1.4M;radius∼10km). A stability presented in section 4 followed by details and current of their periods up to one part in 1020, allows mea- status of Indian PTA experiment called Indian Pulsar surements in astrophysical experiments with precision, Timing Array (InPTA). unprecedented in astronomy, for constraining Equation of State (EoS) of these stars and detecting sub-μHz gravitational waves (GW). 2. Pulsar timing About 2600 pulsars have been discovered so far1 (Manchester et al. 2005), which are broadly classified Pulsar timing involves comparison of the prediction of as normal pulsars, young pulsars and millisecond pul- pulse time-of-arrival (ToA) from an assumed rotational sars, based on their rotation period and magnetic field model of star with the observed ToA to refine the model strength. The latter two of these classes are relevant parameters. The key point of this technique is keeping for this paper. Young pulsars with high magnetic dipo- track of rotation cycles of pulsar, which improves pre- lar surface field (1012 < B < 1014 G) and/or short cision as a function of time. As discussed below, the periods (P ∼ 100 ms) show rotational irregularities, assumed model is usually complex involving several such as abrupt spin-ups, also called glitches (Radhakr- parameters, all of which are estimated in this process. ishnan & Manchester 1969; Lyne et al. 2000; Krawczyk As pulsars are weak sources, ToAs are measured from et al. 2003; Espinoza et al. 2011; Yu et al. 2013), as an average pulse, obtained after averaging the pulsed well as slow wander in rotation rate, known as tim- time series over several thousand pulses. A fiducial ing noise (Boynton et al. 1972; Cordes 1980; Cordes point on the pulse is chosen, which usually comes with & Helfand 1980). Measurements of these rotational a random shift from a noise-free template in a given irregularities are useful for characterizing the internal observation. Template matching is used to find this shift structure of neutron star and constraining its EoS (Link and adjust time of observations (Taylor 1992)togetthe et al. 1999, 1992; Haskell & Melatos 2015; Ho et al. ToA of the pulse up to a precision of few nano-seconds 2015). On the other hand, older pulsars with relatively using an atomic clock, usually a hydrogen maser syn- lower magnetic fields (108 < B < 1011 G) and mil- chronized to an international time scale, called Temps lisecond periods (P ∼ 1.5–30 ms) exhibit a much Atomic Internationale. smaller rotational slow-down and highly stable rota- These observed ToAs are first referred to Solar tion rates. An ensemble of these millisecond pulsars System Barycentre (SSB – an inertial frame) and then (MSPs) is useful as a celestial detector to measure small onwards to an inertial frame for the pulsar as shown metric perturbation caused by GW passing near the below: Earth (Foster & Backer 1990; Joshi 2013). High pre- cision observations of such ensembles are carried out 2 tp = ttopo + tclock − D/f + R + S + E, (1) by the Pulsar Timing Arrays (PTA), which are experi- μ ments for detection of sub- Hz GW (Manchester et al. where ttopo are observed topocentric ToAs, tclock are 2013; Demorest et al. 2013). High-sensitivity observa- clock corrections, D is the dispersion constant account- tions using large collecting area radio telescopes, such ing for dispersive delay in the inter-stellar medium and as the Ooty Radio Telescope (ORT: Swarup et al. 1971) R, S and E are the Roemer, Shapiro and Ein- and the upgraded Giant Meterwave Radio Telescope stein delays respectively (see Stairs (2003) for details (GMRT, uGMRT: Swarup et al. 1991; Gupta et al. 2017) on these delays). Additionally, the timing model may are analysed with pulsar timing technique to obtain high also include dynamics of the star itself and that of its precision measurements for such experiments. companion if the pulsar happens to be in a binary sys- In this paper, a brief review of state-of-the-art in this tem. Finally, the timing model also assumes a rotational field is presented followed by a description of our efforts model of the neutron star given by in this direction using the ORT and the GMRT. The plan 1 2 ν(t) = ν0 +˙ν(t − t0) + ν(¨ t − t0) , (2) 1http://www.atnf.csiro.au/people/pulsar/psrcat/. 2 J. Astrophys. Astr. (2018) 39:51 Page 3 of 10 51 MJD Timing Noise in PSR B0531+21 56660 56680 56700 56720 56740 56760 0.004 20 Fermi-LAT ( 0.1-300 GeV) GMRT (1390 MHz) 0 ORT (334.5 MHz) ASTROSAT (20-150 KeV) -0.004 10 -0.008 2e-08 0 0 Residuals (sec) -10 0 -2e-14 -20 57400 57500 57600 57700 -4e-14 56660 56680 56700 56720 56740 56760 MJD MJD Figure 1. Timing noise seen in the rotation rate of Crab pul- Figure 2. A small glitch detected in PSR B0740−28 at the sar (PSR B0531+21) from radio- to high-energies. The data ORT on MJD 56727. The top panel shows the pre- and post- are from the ORT, the legacy GMRT and the ASTROSAT. glitch timing residuals as a function of MJD. The middle We also used archival data obtained by Fermi telescope. The panel shows pre- and post-glitch spin frequency (ν) and the timing noise, which is a slow wander of rotation rate, is seen bottom panel shows the frequency derivative (ν˙). The pulsar as systematic deviation from zero residuals. The timing resid- was observed at 334.5MHz. uals for the four telescopes are offset from each other by the amount of relative offset in the data acquisition pipeline our high cadence monitoring of this pulsar with the ORT and the GMRT. Another rotational irregularity is pulsar glitch, seen as an abrupt increase in rotation rate of the where ν, ν , ν˙ and ν¨ are the rotational frequency and 0 star, illustrated in Fig. 2 for PSR B0740−28. Also rele- its higher order derivatives assumed at an epoch t .The 0 vant to this paper is systematics in the timing residuals timing model is used to predict the pulse number N, of an ensemble of pulsars due to correlated unmodeled N = ν(t − t0).
Recommended publications
  • Arxiv:2009.10649V3 [Astro-Ph.CO] 30 Jul 2021
    CERN-TH-2020-157 DESY 20-154 From NANOGrav to LIGO with metastable cosmic strings Wilfried Buchmuller,1, ∗ Valerie Domcke,2, 3, † and Kai Schmitz2, ‡ 1Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany 2Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland 3Institute of Physics, Laboratory for Particle Physics and Cosmology, EPFL, CH-1015, Lausanne, Switzerland (Dated: August 2, 2021) We interpret the recent NANOGrav results in terms of a stochastic gravitational wave background from metastable cosmic strings. The observed amplitude of a stochastic signal can be translated into a range for the cosmic string tension and the mass of magnetic monopoles arising in theories of grand unification. In a sizable part of the parameter space, this interpretation predicts a large stochastic gravitational wave signal in the frequency band of ground-based interferometers, which can be probed in the very near future. We confront these results with predictions from successful inflation, leptogenesis and dark matter from the spontaneous breaking of a gauged B−L symmetry. Introduction nal is too small to be observed by Virgo [17], LIGO [18] The direct observation of gravitational waves (GWs) and KAGRA [19] but will be probed by LISA [20] and generated by merging black holes [1{3] has led to an in- other planned GW observatories. creasing interest in further explorations of the GW spec- In this Letter we study a further possibility, metastable trum. Astrophysical sources can lead to a stochastic cosmic strings. Recently, it has been shown that GWs gravitational background (SGWB) over a wide range of emitted from a metastable cosmic string network can frequencies, and the ultimate hope is the detection of a probe the seesaw mechanism of neutrino physics and SGWB of cosmological origin.
    [Show full text]
  • Continuous Gravitational Waves from Neutron Stars: Current Status and Prospects
    Continuous gravitational waves from neutron stars: current status and prospects Magdalena Sieniawska∗1 and Michał Bejger1 1Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00–716 Warszawa, Poland Abstract Gravitational waves astronomy allows us to study objects and events invisi- ble in electromagnetic waves. It is crucial to validate the theories and models of the most mysterious and extreme matter in the Universe: the neutron stars. In addition to inspirals and mergers of neutrons stars, there are currently a few pro- posed mechanisms that can trigger radiation of long-lasting gravitational radiation from neutron stars, such as e.g., elastically and/or magnetically driven deforma- tions: mountains on the stellar surface supported by the elastic strain or magnetic field, free precession, or unstable oscillation modes (e.g., the r-modes). The as- trophysical motivation for continuous gravitational waves searches, current LIGO and Virgo strategies of data analysis and prospects are reviewed in this work. 1 Introduction Gravitational-wave (GW) astronomy has been one of the fastest-growing fields in astro- physics since the first historical detection of a binary black-hole (BH) system GW150814 (Abbott et al., 2016a). In addition to studying the nature of gravitation itself, it may be used to infer information about the astrophysical sources emitting the GWs. This re- view concentrates on a specific kind of prospective GWs: persistent (continuous) grav- itational waves (CGWs), emitted by neutron stars (NSs). The article is arranged as follows. Section1 gathers introductory material: Section 1.1 presents the basics of the GWs theory, Section 1.2 contains a brief overview of GWs detections, Section 1.3 de- arXiv:1909.12600v2 [astro-ph.HE] 5 Nov 2019 scribes properties of NSs and features of hitherto detected NSs-related GWs—a binary NS merger GW170817 (Abbott et al., 2017d), Section 1.4 gathers general information about CGWs, whereas Section 1.5 is devoted to the main data analysis methods used in CGWs searches.
    [Show full text]
  • Search for Electron-Antineutrinos Associated with Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay*
    Chinese Physics C Vol. 45, No. 5 (2021) 055001 Editors′ Suggestion Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay* F. P. An1 A. B. Balantekin2 H. R. Band3 M. Bishai4 S. Blyth5 G. F. Cao6 J. Cao6 J. F. Chang6 Y. Chang7 H. S. Chen6 S. M. Chen8 Y. Chen9,10 Y. X. Chen11 J. Cheng6 Z. K. Cheng10 J. J. Cherwinka2 M. C. Chu12 J. P. Cummings13 O. Dalager14 F. S. Deng15 Y. Y. Ding6 M. V. Diwan4 T. Dohnal16 J. Dove17 M. Dvořák16 D. A. Dwyer18 J. P. Gallo19 M. Gonchar20 G. H. Gong8 H. Gong8 W. Q. Gu4 J. Y. Guo10 L. Guo8 X. H. Guo21 Y. H. Guo22 Z. Guo8 R. W. Hackenburg4 S. Hans4,* M. He6 K. M. Heeger3 Y. K. Heng6 A. Higuera23 Y. K. Hor10 Y. B. Hsiung5 B. Z. Hu5 J. R. Hu6 T. Hu6 Z. J. Hu10 H. X. Huang24 X. T. Huang25 Y. B. Huang26 P. Huber27 D. E. Jaffe4 K. L. Jen28 X. L. Ji6 X. P. Ji4 R. A. Johnson29 D. Jones30 L. Kang31 S. H. Kettell4 S. Kohn32 M. Kramer18,32 T. J. Langford3 J. Lee18 J. H. C. Lee33 R. T. Lei31 R. Leitner16 J. K. C. Leung33 F. Li6 J. J. Li8 Q. J. Li6 S. Li31 S. C. Li27 W. D. Li6 X. N. Li6 X. Q. Li34 Y. F. Li6 Z. B. Li10 H. Liang15 C. J. Lin18 G. L. Lin28 S. Lin31 J. J. Ling10 J. M. Link27 L. Littenberg4 B.
    [Show full text]
  • GW190814: Gravitational Waves from the Coalescence of a 23 M Black Hole 4 with a 2.6 M Compact Object
    1 Draft version May 21, 2020 2 Typeset using LATEX twocolumn style in AASTeX63 3 GW190814: Gravitational Waves from the Coalescence of a 23 M Black Hole 4 with a 2.6 M Compact Object 5 LIGO Scientific Collaboration and Virgo Collaboration 6 7 (Dated: May 21, 2020) 8 ABSTRACT 9 We report the observation of a compact binary coalescence involving a 22.2 { 24.3 M black hole and 10 a compact object with a mass of 2.50 { 2.67 M (all measurements quoted at the 90% credible level). 11 The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing 12 run on August 14, 2019 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector 2 +41 13 network. The source was localized to 18.5 deg at a distance of 241−45 Mpc; no electromagnetic 14 counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured +0:008 15 with gravitational waves, 0:112−0:009, and its secondary component is either the lightest black hole 16 or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless 17 spin of the primary black hole is tightly constrained to 0:07. Tests of general relativity reveal no ≤ 18 measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at −3 −1 19 high confidence. We estimate a merger rate density of 1{23 Gpc yr for the new class of binary 20 coalescence sources that GW190814 represents.
    [Show full text]
  • Gravitational Waves with the SKA
    Spanish SKA White Book, 2015 Font, Sintes & Sopuerta 29 Gravitational waves with the SKA Jos´eA. Font1;2, Alicia M. Sintes3, and Carlos F. Sopuerta4 1 Departamento de Astronom´ıay Astrof´ısica,Universitat de Val`encia,Dr. Moliner 50, 46100, Burjassot (Val`encia) 2 Observatori Astron`omic,Universitat de Val`encia,Catedr´aticoJos´eBeltr´an2, 46980, Paterna (Val`encia) 3 Departament de F´ısica,Universitat de les Illes Balears and Institut d'Estudis Espacials de Catalunya, Cra. Valldemossa km. 7.5, 07122 Palma de Mallorca 4 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, 08193 Cerdanyola del Vall´es(Barcelona) Abstract Through its sensitivity, sky and frequency coverage, the SKA will be able to detect grav- itational waves { ripples in the fabric of spacetime { in the very low frequency band (10−9 − 10−7 Hz). The SKA will find and monitor multiple millisecond pulsars to iden- tify and characterize sources of gravitational radiation. About 50 years after the discovery of pulsars marked the beginning of a new era in fundamental physics, pulsars observed with the SKA have the potential to transform our understanding of gravitational physics and provide important clues about the early history of the Universe. In particular, the gravi- tational waves detected by the SKA will allow us to learn about galaxy formation and the origin and growth history of the most massive black holes in the Universe. At the same time, by analyzing the properties of the gravitational waves detected by the SKA we should be able to challenge the theory of General Relativity and constraint alternative theories of gravity, as well as to probe energies beyond the realm of the standard model of particle physics.
    [Show full text]
  • Arxiv:2009.06555V3 [Astro-Ph.CO] 1 Feb 2021
    KCL-PH-TH/2020-53, CERN-TH-2020-150 Cosmic String Interpretation of NANOGrav Pulsar Timing Data John Ellis,1, 2, 3, ∗ and Marek Lewicki1, 4, y 1Kings College London, Strand, London, WC2R 2LS, United Kingdom 2Theoretical Physics Department, CERN, Geneva, Switzerland 3National Institute of Chemical Physics & Biophysics, R¨avala10, 10143 Tallinn, Estonia 4Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warsaw, Poland Pulsar timing data used to provide upper limits on a possible stochastic gravitational wave back- ground (SGWB). However, the NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The possible NANOGrav signal would correspond to a string tension Gµ 2 (4×10−11; 10−10) at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers. The SGWB produced by cosmic strings with such values of Gµ would be beyond the reach of LIGO, but could be measured by other planned and proposed detectors such as SKA, LISA, TianQin, AION-1km, AEDGE, Einstein Telescope and Cosmic Explorer. Introduction: Stimulated by the direct discovery of for cosmic string models, discussing how experiments gravitational waves (GWs) by the LIGO and Virgo Col- could confirm or disprove such an interpretation. Upper laborations [1{8] of black holes and neutron stars at fre- limits on the SGWB are often quoted assuming a spec- 2=3 quencies f & 10 Hz, there is widespread interest in ex- trum described by a GW abundance proportional to f , periments exploring other parts of the GW spectrum.
    [Show full text]
  • Gravitational Wave Astronomy and Cosmology
    Gravitational wave astronomy and cosmology The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hughes, Scott A. “Gravitational Wave Astronomy and Cosmology.” Physics of the Dark Universe 4 (September 2014): 86–91. As Published http://dx.doi.org/10.1016/j.dark.2014.10.003 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/98059 Terms of Use Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported Detailed Terms http://creativecommons.org/licenses/by-nc-nd/3.0/ Physics of the Dark Universe 4 (2014) 86–91 Contents lists available at ScienceDirect Physics of the Dark Universe journal homepage: www.elsevier.com/locate/dark Gravitational wave astronomy and cosmology Scott A. Hughes Department of Physics and MIT Kavli Institute, 77 Massachusetts Avenue, Cambridge, MA 02139, United States article info a b s t r a c t Keywords: The first direct observation of gravitational waves' action upon matter has recently been reported by Gravitational waves the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They Cosmology will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sen- Gravitation sitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong.
    [Show full text]
  • Deep Learning Ensemble for Real-Time Gravitational Wave Detection of Spinning Binary Black Hole Mergers ∗ Wei Wei A,B,C, , Asad Khan A,B,C, E.A
    Physics Letters B 812 (2021) 136029 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers ∗ Wei Wei a,b,c, , Asad Khan a,b,c, E.A. Huerta a,b,c,d,e, Xiaobo Huang a,b,f, Minyang Tian a,b,c a National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA b NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA c Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA d Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA e Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA f Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA a r t i c l e i n f o a b s t r a c t Article history: We introduce the use of deep learning ensembles for real-time, gravitational wave detection of Received 29 October 2020 spinning binary black hole mergers. This analysis consists of training independent neural networks Accepted 10 December 2020 that simultaneously process strain data from multiple detectors. The output of these networks is then Available online 15 December 2020 combined and processed to identify significant noise triggers. We have applied this methodology in Editor: G.F. Giudice O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center.
    [Show full text]
  • Stochastic Gravitational Wave Backgrounds
    Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6].
    [Show full text]
  • PULSAR TIME and PULSAR TIMING at KALYAZIN , RUSSIA
    PULSAR TIME AND PULSAR TIMING at KALYAZIN , RUSSIA Yu.P. Ilyasov Pushchino Radio Astronomical Observatory (PRAO) of the Lebedev Physical Institute, Russia e-mail: [email protected] BIPM, 2006 MAIN LEADING PARTICIPANTS Belov Yu. I. Doroshenko O. V. Fedorov Yu.Yu.A. A. Ilyasov Yu. P. Kopeikin S. M. Oreshko V. V. Poperechenko B.A. Potapov V. A. Pshirkov M.S. Rodin A.E. Serov A.V. Zmeeva E.V. BIPM, 2006 • Precise timing of millisecond binary pulsars was started at Kalyazin radio astronomical observatory since 1996. (Tver’ region, Russia -37.650 EL; 57.330 NL). • Binary pulsars: J0613-0200, J1020+1001, J1640+2224, J1643- 1224, J1713+0747, J2145-0750, as well as isolated pulsar B1937+21, are among the Kalyazin Pulsar Timing Array (KPTA). • The pulsar B1937+21 is being monitored at Kalyazin observatory (Lebedev Phys. Inst., Russia-0.6 GHz) and Kashima space research centre (NICT, Japan-2.2 GHz) together since 1996. Main aim is: • a) to study Pulsar Time and to establish long life space ensemble of clocks, which could be complementary to atomic standards; • b) to detect gravitational waves extremely low frequency, which are generated Gravity Wave Background – GWB BIPM, 2006 Radio Telescope RT-64 (Kalyazin, Russia) Main reflector diameter 64 m Secondary reflector diameter 6 m RMS (surface) 0.7 mm Feed – Horn (wideband) 5.2 x 2.1 m Frequency range 0.5 – 15 GHz Antenna noise temperature 20K Total Efficiency (through range) 0.6 Slewing rate 1.5 deg/sec Receivers for frequency: 0.6; 1.4; 1.8; 2.2; 4.9; 8.3 GHz BIPM, 2006 Pulsar Signal of pulsar J2145-0750 on the monitor Radio telescope RT-64 Kalyazin pulsar timing complex Mean Pulse Profiles of Kalyazin Pulsar Timing Array (KPTA) pulsars at 600 MHz by 64-m dish and filter-bank receiver J0613-0200 J1012+5307 J1022+1001 J1640+2224 Р=3,1 ms, Pb=1,2 d, DM=38,7911 Р=5,2 ms, Pb=14,5 hrs, DM=9,0205 Р=16,5 ms, Pb=7,8 d, DM=10,2722 Р=3,2 ms, Pb=175 d, DM=18,415 S=10,5 mJy, Δt = 20 μs, Тobs.
    [Show full text]
  • Pos(HEASA2018)029 ∗ [email protected] [email protected] Speaker
    Polarization of Gravitational Waves from Binary Systems PoS(HEASA2018)029 L. Nyadzani∗ Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, Auckland Park 2006, South Africa E-mail: [email protected] S. Razzaque Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, Auckland Park 2006, South Africa E-mail: [email protected] Gravitational waves (GWs) are one of the key predictions of Einstein’s theory of general relativity (GR). Scientists have been looking for evidence of GWs since their prediction by Einstein in 1916. The first direct detection was achieved by LIGO in 2015, 100 years after their prediction, from merging of two black holes in a binary into one. According to GR gravitational waves have two independent polarization states. In this paper, we study the power radiated and the strain of GW along the two polarization states from a compact binary system with its general orbital properties. High Energy Astrophysics in Southern Africa - HEASA2018 1-3 August, 2018 Parys, Free State, South Africa ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ GW Polarizations L. Nyadzani 1. Introduction Gravitational waves are one of the key predictions of Einstein’s theory of general relativity (hereafter GR) [1, 2]. In GR, accelerated massive bodies generate ripples in spacetime. These rip- ples radiate away from their source at the speed of light [3]. The same way the electromagnetic radiation carry information about their origin, GWs also carry information about their origin.
    [Show full text]
  • European Pulsar Timing Array
    European Pulsar Timing Array Stappers, Janssen, Hessels et European Pulsar Timing Array AIM: To combine past, present and future pulsar timing data from 5 large European telescopes to enable improved timing of millisecond pulsars in general, and in specific to use these millisecond pulsars as part of a pulsar timing array to detect gravitational waves. Gravitational Wave Spectrum α hc(f) = A f 2 2 2 2 Ωgw(f) = (2 π /3 H0 ) f hc(f) LISA PTA LIGO Detecting Gravitational Waves With Pulsars • Observed pulse periods affected by presence of gravitational waves in Galaxy • For stochastic GW background, effects at pulsar and Earth are uncorrelated • With observations of one or two pulsars, can only put limit on strength of stochastic GW background, insufficient constraints! • Best limits are obtained for GW frequencies ~ 1/T where T is length of data span • Analysis of 8-year sequence of Arecibo observations of PSR B1855+09 gives -7 Ωg = ρGW/ρc < 10 (Kaspi et al. 1994, McHugh et al.1996) • Extended 17-year data set gives better limit, but non-uniformity makes quantitative analysis difficult (Lommen 2001, Damour & Vilenkin 2004) A Pulsar Timing Array • With observations of many pulsars widely distributed on the sky can in principle detect a stochastic gravitational wave background resulting from binary BH systems in galaxies, relic radiation, etc • Gravitational waves passing over the pulsars are uncorrelated • Gravitational waves passing over Earth produce a correlated signal in the TOA residuals for all pulsars • Requires observations of ~20 MSPs over 5 – 10 years; with at least some down to 100 ns could give the first direct detection of gravitational waves! • A timing array can detect instabilities in terrestrial time standards – establish a pulsar timescale • Can improve knowledge of Solar system properties, e.g.
    [Show full text]