60 Cm (2 Ō ) in Diameter and Sixteen Clusters of up to a Few Dozen Tentacles, 6

Total Page:16

File Type:pdf, Size:1020Kb

60 Cm (2 Ō ) in Diameter and Sixteen Clusters of up to a Few Dozen Tentacles, 6 UIZ Q MAYANGLAMBAM OJIT KUMAR SINGH UN F 1. What common name is given to this Box jellyfi sh (Chironex 5. What alternate name is usually given to Octopus? fl eckeri) which is considered to be “the most lethal jellyfi sh in Considered the most intelligent of all invertebrates, the world”? The box jellyfi sh’s venom aƩ acks the heart, nervous the octopus can grow to about 4.3 feet system, and skin cells. Its venom is so overpoweringly painful, (1.3 meters) in length and weigh up to 22 pounds (10 kilograms). human vicƟ ms have been a) Monster fi sh b) Angler fi sh known to go into shock and c) Spider fi sh d) Devil fi sh drown or die of heart failure even before reaching the shore. a) Sea wasp b) Suckerpunch of the sea c) Marine sƟ ngers d) All are correct 2. Fried egg jellyfi sh is the name given to a species of _______. It is a very large jellyfi sh, with a bell up to 60 cm (2 Ō ) in diameter and sixteen clusters of up to a few dozen tentacles, 6. These small, scavenging insects called Psocids with a relaƟ vely each up to 6 metres (20 Ō ) generalized body plan feed primarily on fungi, algae, lichen, and long. organic detritus. What common name is given to these insects a) Cnidarian which are found so b) Water bug common among the c) Fish pages of old books in d) Octopus our libraries? a) Head lice b) Body Lice 3. What other name is given to this c) Book Scorpion animal called Euplectella aspergillum? d) Book Lice This animal is found living in marine water of the sea or ocean. In a dead, dry state it is given as a wedding giŌ 7. What other name because the sponge symbioƟ cally is given to this crab houses two small shrimps, a male and (Birgus latro), which is a female, who live out their lives inside also the largest land- the sponge. living arthropod in the a) The Mar’s Flower basket world? b) The Venus’ Flower basket a) Coconut crab c) The Earth’s fl ower basket b) Palm thief d) The Jupiter Flower basket c) Robber crab d) All are correct 4. These sedentary inhabitants of coral reefs in the picture belong to a class of annelid worms commonly called Bristle worms. 8. These rare uncommon insects also called the true leaf By what name do we know insects are some of the most remarkable leaf mimics in the enƟ re these tube building animals animal kingdom. These leaf insects are also called: which have chromaƟ cally hued a) Jumping leaf spiral structures? The worm insect is aptly named because of the b) Climbing leaf two chromaƟ cally hued spiral insect structures, the most common c) Walking leaf feature seen by divers. insect a) Christmas worms d) Flying leaf b) Christmas Bristle insect c) Christmas tree worms d) Sea tree worm SCIENCE REPORTER, SEPTEMBER 2015 60 FUNQUIZ 9. Name these insects (scienƟ fi cally known as Erotylidae) which 14. Thorny Devil (Moloch horridus) belies its name because are usually found feeding on the it moves slowly around the Australian desert, harming fruits of fungi? only the ant populaƟ on which makes up its sole diet. a) Salty fungus beetle What other name is given to this scaly-skinned lizard with b) Sweet fungus beetle prominent spines? c) Mushroom beetle a) Thorny dragon b) Mountain devil d) Pleasing fungus beetle c) Thorny lizard d) All are correct 10. Starfi sh used to be the common name given to star-shaped echinoderms belonging to the class Asteroidea. This name has been replaced by: a) BriƩ le star b) Water star c) Fish star d) Sea star 15. The peach-faced lovebird (Agapornis roseicollis) is a species of lovebird naƟ ve to arid regions in southwestern Africa such as the Namib desert. The other 11. Bothus mancus or the Peacock fl ounder is a species of fi sh common name given to which has both eyes on top of this bird is: the leŌ hand side of its head. a) Rosy-faced It is also known as: lovebird a) The fl owery fl ounder b) Pink-faced b)The fruity fl ounder lovebird c) The seedling fl ounder c) Black winged d)The leafy fl ounder lovebird d) Red-headed lovebird 12. What common name is given to this unique horse-shaped fi sh (Hippocampus) species in which the males bear the 16. What other name is unborn young? This fi sh has no teeth and no stomach. given to the Indian fl ying Food passes through their fox (Pteropus giganteus)? digesƟ ve systems so quickly, a) The greater Indian they must eat almost bat constantly to stay alive. b) The greater Indian fruit a) Ocean horse bat b) Sea horse c) The greater Indian sky c) River horse fox d) Lake horse d) The greater Indian fl ying mammal 13. This small chorus frog (Pseudacris crucifer) is to the amphibian world what American robin is to the bird world. What common name is assigned to these funny liƩ le champion Answers: singers who emit their familiar sleigh- 1.d 2.a 3.b 4.c bell-like chorus right 5.d 6.d 7.d 8.c around the beginning 9.d 10.d 11.a 12.b of spring? 13.d 14.d 15.a 16.b a) Spring singers b) Spring walkers Contributed by Dr. Mayanglambam Ojit Kumar Singh, Assistant Professor of c) Spring bringers Zoology, Ramjas College, Maurice Nagar, Delhi University, Delhi-110007 d) Spring Peepers Figure of Q.1 and Q.13 are taken from http://animals.nationalgeographic.com/ animals/invertebrates/box-jellyfi sh/. The other photographs are all from Google image.) 61 SCIENCE REPORTER, SEPTEMBER 2015.
Recommended publications
  • Jarvis Island NWR Final
    Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan FINDING OF NO SIGNIFICANT IMPACT Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan Unincorporated U.S. Territory, Central Pacific Ocean The U.S. Fish and Wildlife Service (Service) has completed the Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for Jarvis Island National Wildlife Refuge (Refuge). The CCP will guide management of the Refuge for the next 15 years. The CCP and EA describe the Service’s preferred alternative for managing the Refuge and its effects on the human environment. Decision Following comprehensive review and analysis, the Service selected Alternative B in the draft EA for implementation because it is the alternative that best meets the following criteria: Achieves the mission of the National Wildlife Refuge System. Achieves the purposes of the Refuge. Will be able to achieve the vision and goals for the Refuge. Maintains and restores the ecological integrity of the habitats and plant and animal populations at the Refuge. Addresses the important issues identified during the scoping process. Addresses the legal mandates of the Service and the Refuge. Is consistent with the scientific principles of sound wildlife management. Can be implemented within the projected fiscal and logistical management constraints associated with the Refuge’s remote location. As described in detail in the CCP and EA, implementing the selected alternative will have no significant impacts on any of the natural or cultural resources identified in the CCP and EA. Public Review The planning process incorporated a variety of public involvement techniques in developing and reviewing the CCP. This included three planning updates, meetings with partners, and public review and comment on the planning documents.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Catch, Abundance and Life History Parameters
    Marine Fisheries Stock Assessment Improvement Plan: report of the National Marine Fisheries Service National Task Force for Improving Fish Stock Assessments Item Type monograph Authors Mace, Pamela M.; Bartoo, Norman W.; Hollowed, Anne B.; Kleiber, Pierre; Methot, Richard D.; Murawski, Steven A.; Powers, Joseph E.; Scott, Gerald P. Publisher NOAA/National Marine Fisheries Service Download date 27/09/2021 03:57:44 Link to Item http://hdl.handle.net/1834/30427 Appendix 1. Levels of input data (catch, abundance and life history parameters), assessment methodology and assessment frequency for the 904 stocks listed in the NMFS (1999a) Report to Congress on the Status of Fisheries of the United States. See Figure 3 and the text for a description of the levels, Figure 4 for graphical summaries and Table 1 for tabular summaries. Fishery Management Life Assessment Assessment Stock Jurisdiction Catch Abundance Plan History Level Frequency Atlantic Sea Scallop Atlantic Sea Scallop NEFMC 3 2 2 2 2 Atlantic Salmon Atlantic Salmon NEFMC 4 2 3 4 3 NEFMC - American Lobster American Lobster 3 3 3 4 2 ASMFC Northeast Multispecies Gulf of Maine NEFMC 4 2 4 4 3 Cod Georges Bank NEFMC 4 2 4 5 3 Georges Bank NEFMC 4 2 4 5 3 Haddock Gulf of Maine NEFMC 3 2 2 2 1 Georges Bank NEFMC 5 2 4 4 3 Yellowtail Southern New England NEFMC 5 2 4 4 3 Flounder Cape Cod NEFMC 4 2 4 4 2 Middle Atlantic NEFMC 4 2 2 2 1 American Plaice NEFMC 5 2 3 4 2 Redfish NEFMC 3 2 2 2 1 Witch Flounder NEFMC 5 2 3 4 2 White Hake NEFMC 4 2 3 4 2 Pollock NEFMC 4 1 3 4 1 Gulf of Maine / NEFMC
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • Stock Status Table
    National Marine Fisheries Service - 2020 Status of U.S. Fisheries Table A. Summary of Stock Status for FSSI Stocks Overfishing? Overfished? (Is Fishing Management Rebuilding (Is Biomass Approaching Jurisdiction FMP Stock Mortality Action Program B/B Points below Overfished MSY above Required Progress Threshold?) Threshold?) Consolidated Atlantic Highly Atlantic sharpnose shark - Atlantic HMS No No No NA NA 2.08 4 Migratory Species Atlantic Consolidated Atlantic Highly Atlantic sharpnose shark - Atlantic HMS No No No NA NA 1.02 4 Migratory Species Gulf of Mexico Reduce Consolidated Atlantic Highly Mortality, Year 8 of 30- Atlantic HMS Blacknose shark - Atlantic Yes Yes NA 0.43-0.64 1 Migratory Species Continue year plan Rebuilding Consolidated Atlantic Highly not Atlantic HMS Blacktip shark - Atlantic Unknown Unknown Unknown NA NA 0 Migratory Species estimated Consolidated Atlantic Highly Blacktip shark - Gulf of Atlantic HMS No No No NA NA 2.62 4 Migratory Species Mexico Consolidated Atlantic Highly Finetooth shark - Atlantic Atlantic HMS No No No NA NA 1.30 4 Migratory Species and Gulf of Mexico Consolidated Atlantic Highly Great hammerhead - Atlantic not Atlantic HMS Unknown Unknown Unknown NA NA 0 Migratory Species and Gulf of Mexico estimated Consolidated Atlantic Highly Lemon shark - Atlantic and not Atlantic HMS Unknown Unknown Unknown NA NA 0 Migratory Species Gulf of Mexico estimated Consolidated Atlantic Highly Sandbar shark - Atlantic and Continue Year 16 of 66- Atlantic HMS No Yes NA 0.77 2 Migratory Species Gulf of Mexico
    [Show full text]
  • Top 51-100 Offshore Fish Flash Cards
    OFFSHORE FISH ID 51-100 1 Instructions for Printing as Flash Cards 1. Edit Print Settings to [4-pages to 1]; Single Sided 2. Cut out Cards 3. Fold along dotted line so ID Name is hidden behind each card Cut Fold Fold Cut Fold Fold 2 • Purple coloration dorsally • Yellow-gold ventrally and posteriorly • Size: 8” – 14” Spanish Hogfish 3 Bodianus rufus | Wrasses – Labridae • Yellow-gold spots on body • Silvery elongate body • Size: 1’ – 3’ Spanish mackerel 4 Scomberomorus maculatus | Mackerels – Scombridae • Torpedo body w/ flattened forebody • Silver to brown coloration • Sometimes black and white stripes • Size: 2’ – 4’ 5 Cobia Rachycentron canadum | Cobias – Rachycentridae • White side “bridle” running from rear of mouth to gill cover • Color Whitish to transparent, often without markings • Size: 1” – 2” 6 Bridled Goby Coryphopterus glaucofraenum | Gobies – Gobiidae • Three dark spots in a row • Two chin barbels • Mottled reddish-brown when resting • Size: 5” – 8” Spotted Goatfish 7 Pseudopeneus maculatus | Goatfishes – Mullidae • Head and pectoral fins form a triangular ray- like anterior • Thick, tapered, shark- like posterior • Size: 1’ – 2’ Atlantic Guitarfish 8 Rhinobatos lentiginosus | Guitarfishes – Rhinobatidae • Dorsal, anal, and caudal fins without spots • Single black stripe from dorsal fin to caudal fin • Juvenile: Vertical black dash on nose • Size: 5” – 8” Juvenile Juvenile Jackknife-fish 9 Equetus lanceolatus | Drums – Sciaenidae • Overbite • Black spot at base of pectoral fin • Size: 8” – 14” Sheepshead Porgy 10 Calamus
    [Show full text]
  • Ecologically Or Biologically Significant Marine Areas (Ebsas) Special Places in the World’S Oceans
    2 Ecologically or Biologically Significant Marine Areas (EBSAs) Special places in the world’s oceans WIDER CARIBBEAN AND WESTERN MID-ATLANTIC Areas described as meeting the EBSA criteria at the CBD Wider Caribbean and Western Mid-Atlantic Regional Workshop in Recife, Brazil, 28 February to 2 March 2012 Published by the Secretariat of the Convention on Biological Diversity. ISBN: 92-9225-560-6 Ecologically or Copyright © 2014, Secretariat of the Convention on Biological Diversity. The designations employed and the presentation of material in this publication do not imply the expression Biologically Significant of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Marine Areas (EBSAs) The views reported in this publication do not necessarily represent those of the Secretariat of the Convention on Biological Diversity. Special places in the world’s oceans The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsi ble for Areas described as meeting the EBSA criteria at the any use which may be made of the information contained therein. CBD Wider Caribbean and Western Mid-Atlantic Regional This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. The Secretariat of the Convention on Workshop in Recife, Brazil, 28 February to 2 March 2012 Biological Diversity would appreciate receiving a copy of any publications that use this document as a source.
    [Show full text]
  • Table S51. Average Net Primary Production Values Reported from Mangrove Forests of South Florida and Eastern Mexico
    Table S51. Average net primary production values reported from mangrove forests of south Florida and eastern Mexico. The values were obtained by several different methods of measurement and reported in different units, but for the table all values have been standardized as discussed in the text. (South Florida data from Odum, McIvor, and Smith 1982. Mexican data from Barriero-Gilemes and Balderas-Cortes 1991; Rico-Gray and Lot- Helgueras 1983.) Forest type g C/m2/yr g dry wt/m2/yr lb/A/yr South Florida Red mangroves 1,934.5 6,248 55,732 Black mangroves 1,533.0 4,952 45,172 Mixed forests 3,029.5 9,785 87,282 Eastern Mexico Red mangroves 153.6 496 4,424 Black mangroves 257.6 832 7,421 Table S52. Estimates of litter fall (as dry organic matter) in several types of mangrove forests of south Florida. Values given for red and black mangrove under “variety of types” include those for riverine, overwash, fringe, and “mature” forests. (Recalculated from data in Odum, McIvor, and Smith 1982.) Annual litter fall 2 Forest type Daily litter fall (g/m2/day) g/m /yr lb/A/yr Red mangrove -variety of types 2.8 1,022 9,116 -scrub forest 0.4 146 1,302 Black mangrove -variety of types 1.3 475 4,237 Mixed forests 2.3 840 7,493 Table S53. Brief sketches of important families of perciform fishes found in neritic or epipelagic waters of the Gulf of Mexico, giving information on recognition characters, habitats, and habits and listing important genera.
    [Show full text]
  • Changeable Camouflage: How Well Can Flounder Resemble the Colour and Spatial Scale of Substrates in Their Natural Habitats?
    Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats? The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Akkaynak, Derya; Siemann, Liese A.; Barbosa, Alexandra and Mäthger, Lydia M. “Changeable Camouflage: How Well Can Flounder Resemble the Colour and Spatial Scale of Substrates in Their Natural Habitats?” Royal Society Open Science 4, no. 3 (March 2017): 160824 © 2017 The Authors As Published http://dx.doi.org/10.1098/rsos.160824 Publisher Royal Society Version Final published version Citable link http://hdl.handle.net/1721.1/110056 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ Downloaded from http://rsos.royalsocietypublishing.org/ on May 19, 2017 Changeable camouflage: how well can flounder rsos.royalsocietypublishing.org resemble the colour and Research spatial scale of substrates Cite this article: Akkaynak D, Siemann LA, in their natural habitats? Barbosa A, Mäthger LM. 2017 Changeable camouflage: how well can flounder resemble Derya Akkaynak1,2,3, Liese A. Siemann1,4, Alexandra the colour and spatial scale of substrates in their natural habitats? R. Soc. open sci. Barbosa1 and Lydia M. Mäthger1 4: 160824. 1Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA http://dx.doi.org/10.1098/rsos.160824 2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Oceanography and Applied Ocean Science, Woods Hole Oceanographic Institution, Received: 22 October 2016 Woods Hole, MA 02543, USA 4 Accepted: 3 February 2017 Coonamessett Farm Foundation, 277 Hatchville Road, East Falmouth, MA 02536, USA LMM, 0000-0002-0603-0345 Flounder change colour and pattern for camouflage.
    [Show full text]
  • Coral Reef Flounders, Bothus Lunatus, Choose Substrates on Which They
    bs_bs_banner Biological Journal of the Linnean Society, 2015, 114, 629–638. With 5 figures Coral reef flounders, Bothus lunatus, choose substrates on which they can achieve camouflage with their Downloaded from https://academic.oup.com/biolinnean/article-abstract/114/3/629/2415922 by AZTI FUNDACION user on 24 September 2018 limited body pattern repertoire ELIZABETH K. TYRIE1†, ROGER T. HANLON2,3, LIESE A. SIEMANN2 and MARIA C. UYARRA4*† 1Department of Geography and Geology, Hoffman Environmental Research Institute, Western Kentucky University, Bowling Green, KY 42101, USA 2Program in Sensory Physiology and Behavior, Marine Biological Laboratory, Woods Hole, MA 02543, USA 3Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA 4Marine Research Division, AZTI Tecnalia, Pasaia 20110, Spain Received 8 June 2014; revised 1 October 2014; accepted for publication 2 October 2014 Camouflage is a common tactic to avoid detection or recognition by predators and prey. Flounders have adaptive camouflage but a limited body pattern repertoire. We tested whether peacock flounders actively select or avoid certain substrates to more effectively use their limited camouflaging ability. We acquired and analyzed ten 30-min videos of individual flounders on a coral reef in Bonaire, Dutch Caribbean. Using Manly’s beta resource selection indices, we were able to confirm that peacock flounders at this location preferred to settle on neutral-coloured substrates, such as sand and dead coral. Moreover, they avoided live coral, cyanobacteria, and sponges, which are often brightly coloured (e.g. yellow, orange, and purple). Quantitative analyses of photographs of settled flounders indicate that they use uniform and mottled camouflage patterns, and that the small-to-moderate spatial scale of their physiologically controlled light and dark skin components limits their camouflage capabilities to substrates with similar colour and spatial frequencies.
    [Show full text]
  • Saba Bank Special Marine Area Management Plan 2008 Cover Photo by Jan Den Dulk: Hawksbill Turtle on Unidentified Shipwreck in the Middle of the Saba Bank
    Saba Bank Special Marine Area Management Plan 2008 Shelley Lundvall Special Area Management Plan Saba Bank Special Marine Area Management Plan 2008 Cover photo by Jan den Dulk: Hawksbill Turtle on unidentified shipwreck in the middle of the Saba Bank 2 Contents LIST OF TABLES .............................................................................................................................................................................. 2 LIST OF FIGURES ............................................................................................................................................................................. 2 ACKNOWLEDGEMENTS ...................................................................................................................................................................... 3 ACRONYMS AND ABBREVIATIONS .................................................................................................................................................... 4 FOREWORD ....................................................................................................................................................................................... 5 HOW TO USE THE SABA BANK MARINE MANAGEMENT PLAN ........................................................................................................... 7 SUMMARY ......................................................................................................................................................................................... 8 INTRODUCTION
    [Show full text]