Key out the Salmonid Species

Total Page:16

File Type:pdf, Size:1020Kb

Key out the Salmonid Species Key Out the Salmonid *Adapted from “2.4 Key It Out!” Students for Salmon Curriculum from the Nooksack Salmon Enhancement Association (http://www.n-sea.org/sfs-curriculum/) Objectives Become familiar with steelhead and the five Pacific Salmon species Use a dichotomous key to identify the six salmonids Understand how physical characteristic may impact a fish’s survival or ability to mate. Materials Pencil or Pen Dichotomous Key for each student Six salmon identification pages (PDF for printing or use the PowerPoint) Background After learning the differences between the six major salmonid species in the Puget Sound, students can now learn to distinguish them by appearance and reinforce what they have already learned. While distinguishing the fish, they’ll also be able to observe physical characteristics more closely and discuss their significance. These salmonids are each distinct species and have specific physical traits that help them survive and find mates to reproduce with. The images of the salmon in this activity are depictions of salmon when they are spawning, the time when some physical characteristics become more pronounced. Regardless of the sex of the fish, they both spend energy preparing their bodies to reproduce. Females must grow eggs and develop characteristics to contend with other females for nesting sites, while males will produce milt (fish semen) and often grow larger physical characteristics to compete with other males. Instructions Decide and use one of the following methods to organize the activity: a. By station; print the salmonid identification sheets—SINGLE SIDED AND IN COLOR, then place the salmonid identification sheets around the room as stations. Divide and start an equal number of students at each station, you can have them work as a group or individually. Give students 1-5 minutes (depending on the age group), to observe each identification sheet. Rotate the students clockwise until each group has visited the 6 different stations. b. By classroom display; view this PDF in ‘presentation’ display (view>present/full screen) and treat the pages with the salmon ID cards as slides. Have the class observe the slideshow in groups or individually. Advance each slide after 1-5 minutes (depending on the age group), until each of the 6 salmonid identification sheets has been observed by the class. Procedure: 1. Print and hand out a copy of the dichotomous key to each student or each group of students working together. 2. Explain to the class that as they rotate around the room (or observe the PowerPoint) they will use the dichotomous key to discover the identity of each fish. They will use the color images and the clues given to answer the questions on the key. Once they have followed the questions and answered them correctly, they will know the name of each fish. 3. Instruct the students to start at QUESTION 1 of the dichotomous key at each station (or PowerPoint slide). Explain that each question has two possible answers but that only one answer is true. 4. Once students determine which answer they think is true, they will follow that answer to the next step and repeat the process until they discover the name of the salmonid they are identifying. 5. Once they have identified the salmonid at the first station (or slide), or the allotted time is up, have the students write the name of the salmonid they identified at the bottom of their dichotomous key. 6. Have the students repeat steps 3-5 for until every student has visited each station, or, view every slide. Discussion Questions 1. What characteristics would you look for to identify an adult steelhead? 2. List some unique features of each salmon species. 3. Chum salmon are a silver color before they return to a shallow, fresh water stream to spawn where they are more vulnerable to predators on land. a. What do they look like when they are spawning as pictured? b. How would their appearance help them survive in a forest stream? 4. Male pink salmon, which are also sometimes called “humpies,” develop large humps on their back when they return to their fresh water stream to spawn. They often have to compete with other males to fertilize female eggs. a. Why would a large hump help them compete with other males? b. If pink salmon with larger humps are more successful at fertilizing female eggs, is it more likely that that their offspring will have large or small humps? NGSS: Performance Expectation: 3-LS4 From Molecules to Organisms: Structures and Processes 3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Scientific and Engineering Disciplinary Core Ideas Crosscutting Concepts Practices Use evidence to LS4.B: Natural Selection- Cause and Effect construct explanations. Sometimes the differences in Cause and effect characteristics between relationships are routinely individuals of the same identified and used to explain species provide advantages change. in surviving, finding mates, and reproducing. https://www.nextgenscience.org/pe/3-ls4-2-biological-evolution-unity-and-diversity Instructor Answer Key Station #1: Sockeye Salmon (Oncorhynchus nerka) Station #2: Chinook Salmon (Oncorhynchus tshawytscha) Station #3: Chum Salmon (Oncorhynchus keta) Station #4: Coho Salmon (Oncorhynchus kisutch) Station #5: Pink Salmon (Oncorhynchus gorbuscha) Station #6: Steelhead (Oncorhynchus mykiss) Identify Six Local Salmonid Species Use this key and the pictures provided to identify the different local salmonid species you have learned about. Instructions 1. Start at question 1 2. Read the question, then look at the picture and read the clues provided 3. Answer the question and follow the directions to the next step. 4. Go to the next step. 5. Repeat the process until you identify the fish. Question 1: Does the salmonid have spots on its caudal fin, dorsal fin, and back? 1a. Yes, the salmonid has spots on its caudal fin, dorsal fin, and back. Go to 2 OR 1b. No, the salmonid is missing spots in one or more of those locations. Go to 5 Question 2: Does the salmonid have spots covering its entire body, including on the belly and anal fin? 2a. Yes, the salmonid has spots on its entire body, and it has a slight rainbow coloring Answer = Steelhead (Oncorhynchus mykiss) OR 2b. No, the salmonid mainly has spots on its back, dorsal fin, and caudal fin. Go to 3 Question 3: Does the salmonid have spots over most of the caudal fin? 3a. Yes, the salmonids caudal fin is covered in spots. Go to 4 OR 3b. No, there are spots only on the top of the caudal fin, and the gums are white. Answer = Coho Salmon (Oncorhynchus kisutch) Question 4: Does the salmonid have large oval spots on its back and caudal fin as well as a hump on its back just behind its head (male only)? 4a. Yes, the spots on the salmon are large and oval, and there is a hump on the male’s back. Answer = Pink Salmon (Oncorhynchus gorbuscha) 4b. No, the spots are not large and oval, and there is no hump, but the gums are black. Answer = Chinook Salmon (Oncorhynchus tshawytscha) Question 5: Does the salmonid have an olive green body and dark red or purple bars on its side when spawning? 5a. Yes, the salmonid is olive green and has dark red or purple bars on its side. Answer = Chum salmon (Oncorhynchus keta) 5b. No, the salmonid has a red body when spawning. Answer = Sockeye salmon (Oncorhynchus nerka) ANSWERS: Write the correct name of the salmonid next to each station number. Station #1 ____________________________________________________ Station #2 ____________________________________________________ Station #3 ____________________________________________________ Station #4 ____________________________________________________ Station #5 ____________________________________________________ Station #6____________________________________________________ Station #1 Red body when spawning Average weight: 4-8 lbs Station #2 Dorsal Fin Caudal Fin Black/Gray Gums Largest of local Pacific Salmon Average weight: 10-24 lbs Station #3 Dorsal Fin Caudal Fin Red or purple vertical bars on body when spawning Average weight: 9-15 lbs www.fws.gov Station #4 Dorsal Fin Caudal Fin White Gums Average weight: 6-12 lbs www.fws.gov Station #5 Large oval spots on caudal fin and back, male develops hump when spawning Average weight: 2-5 lbs Station #6 Dorsal Fin Caudal Fin Dark spots covering the entire fish, slight rainbow coloring Average weight: 6-11 lbs Adult Chum Salmon Before Spawning: Photo courtesy of NOAA: https://www.fisheries.noaa.gov/species/chum-salmon Adult Pink Salmon with Large Hump: Photo courtesy of Washington Department of Fish and Wildlife: https://wdfw.wa.gov/fishing/salmon/pink.html Adult Pink Salmon with Large Hump: Photo courtesy of U.S. Fish and Wildlife Service: https://www.fws.gov/alaska/fisheries/fieldoffice/fairbanks/salmon/salmon%20ID%20chart.pdf Adult Pink Salmon with Small Hump: Photo courtesy of Timothy Knepp, U.S. Fish and Wildlife Service: https://news.orvis.com/fly-fishing/fish-facts-pink-salmon-oncorhyncus-gorbuscha .
Recommended publications
  • Lake Huron Spawning
    Thunder Bay River Assessment Appendix Pink salmon (Oncorhynchus gorbuscha) Habitat: feeding - large cold deep lakes - Lake Huron spawning - gravel substrate in rivers - female prepares and guards nest until death 0 5 10 Miles Alpena Hillman Atlanta Thunder Bay Lake Huron 98 Thunder Bay River Assessment Appendix Coho salmon (Oncorhynchus kisutch) Habitat: feeding - adults: Lake Huron - young: shallow gravel substrate in cold streams, later into pools spawning - cold streams and rivers - swifter water of shallow gravelly substrate 0 5 10 Miles Alpena Hillman Atlanta Thunder Bay Lake Huron 99 Thunder Bay River Assessment Appendix Rainbow trout (Oncorhynchus mykiss) Habitat: feeding - cold clear water of rivers and Lake Huron - moderate current spawning - gravelly riffles above a pool - smaller tributaries 0 5 10 Miles Alpena Hillman Atlanta Thunder Bay Lake Huron 100 Thunder Bay River Assessment Appendix Chinook salmon (Oncorhynchus tshawyscha) Habitat: feeding - adults: Lake Huron - young: shallow gravel substrate in cool streams, later into pools spawning - gravelly substrate in cool streams 0 5 10 Miles Alpena Hillman Atlanta Thunder Bay Lake Huron 101 Thunder Bay River Assessment Appendix Round whitefish (Prosopium cylindraceum) Habitat: feeding - lakes, rivers, and streams spawning - shallows of lakes and rivers - gravel or rock substrate 0 5 10 Miles Alpena Hillman Atlanta Thunder Bay Lake Huron 102 Thunder Bay River Assessment Appendix Atlantic salmon (Salmo salar) Habitat: feeding - young: gravel substrate streams - adults: Lake Huron
    [Show full text]
  • Salmon Fact Sheet
    THE WILD SALMON SEAFOOD MARKET’S GUIDE TO W I L D P A C I F I C S A L M O N Salmon Pacific Salmon occur from northern California along the Pacific Coast throughout the Pacific Ocean, Bering Sea and Arctic Ocean waters adjacent to Alaska. Salmon are anadromous, that is, they spawn in fresh water and the young migrate to the sea where they mature. The mature Salmon returns to the stream of their birth to spawn. Nutrition Few single foods bring as many valuable contributions to the table as Salmon. An excellent source of high-quality protein, containing all the essential amino acids. The fats in Salmon are predominately unsaturated. These fats are evidenced to reduce the risk of heart disease. Availability Although each species has a particular season, small fisheries of wild salmon occur periodically, making fresh salmon (often hard to find and expensive) available throughout the year. Your best values will come during peak salmon season, May through September. Frozen salmon (often frozen at sea) is available during the off season. Also known as Chinook Salmon. Also known as Silver Salmon. Highly desired for King The largest of the species and the most Coho both table use and smoking. Coho salmon offers prominent of the salmon known for its high oil firm meat with excellent flavor slightly milder than content and distinctive, rich flavor. King and Sockeye. Average size from 5 to 40 lbs. Average size from 4 - 9 lbs. Available May - September Available June - September Copper River & Yukon River King Also known as Chum Salmon.
    [Show full text]
  • Imagine the Silver Beauty and the Fighting Spirit of Atlantic Salmon; The
    Sakhalin Silver Text and Photos: Clemens Ratschan Imagine the silver beauty and the fighting spirit of Atlantic salmon; the complex, unpredictable life- history of sea trout and combine with the ferocious take and body mass of a predatory taimen. This will give you a glimpse of what fishing for Sakhalin taimen, the silver of the Russian Far East, is about. AM PLEASED TO introduce Siberian taimen, Hucho taimen. No this fish to the readers of wonder, scientists also erroneously Chasing Silver, because in related this far-eastern species to many respects it forms a the large-sized, non-anadromous missing link between the predators of the genus Hucho, which Ifishery for anadromous salmon and is a branch of the salmonoid tree for huchen, a big predatory non- that occurs exclusively in Eurasia. anadromous salmonoid in my home In Central Europe, Hucho hucho is country of Austria (‘Danube salmon’ restricted to the Danube System, in English. See article “Taimen” by where self-sustaining stocks are Wolfgang Hauer, issue 3/2010). presently only found in a handful of Sakhalin taimen is one of the rivers in Germany, Austria, Slovakia least-known salmonid species among and former Yugoslavia. Huchen is non-Russian fishermen; even many very closely related to the already- Russians tend to confuse it with the mentioned Siberian taimen. The latter | 62 | Chasing Silver Fly Fishing Magazine April’s Fav Five www.chasingsilvermagazine.com | 63 | Sakhalin Silver inhabits a distant, vast range from a habits. But one ecological feature expeditions to Japan. Later, the fish few places in European Russia to the is unique – all members of the true was assigned to the genus Parahucho, Lena and Amur rivers in the very far huchen live exclusively in fresh water, with regard to some obvious east of northern Asia.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 27: 277–287, 2015 ENDANGERED SPECIES RESEARCH Published online May 13 doi: 10.3354/esr00675 Endang Species Res OPENPEN ACCESSCCESS Causes of the drastic loss of genetic variation in the Critically Endangered Formosa landlocked salmon of Taiwan Te-Hua Hsu1, Keisuke Takata2, Hiroshi Onozato3, Jin-Chywan Gwo1,* 1Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan 2Faculty of Science, Shinshu University, Matsumoto-city, Nagano 390-8621, Japan 3Matsumoto Institute of Microorganisms Co. Ltd., Matsumoto-city, Nagano 390-1241, Japan ABSTRACT: The use of hatchery-reared fish to replenish existing threatened wild populations has been shown to reduce or change the natural genetic diversity of the wild populations. In this study, the genetic diversity of wild Formosa landlocked salmon Oncorhynchus formosanus in its main habitat of the Chichiawan Stream in Taiwan was examined after a large-scale escape of hatchery- cultivated fish. Approximately 3000 individuals (the descendants of only 5 pairs of wild salmon) es- caped from an old hatchery when Typhoon Ariel breached the hatchery in the fall of 2004. The ge- netic diversity of the wild population was extremely low at that time, and declined further between 2004 and 2008 following the escape of hatchery fish. We hypothesize that the decline in genetic di- versity of the wild population was mainly caused by a population bottleneck in 2005, and that ge- netic homogeneity since 2005 was caused by breeding of the escaped hatchery fish (which showed low genetic diversity) that survived the floods of 2004. This supports the possibility that the drastic decline in genetic diversity between 2004 and 2008 was caused by the genetic effects of the escaped hatchery fish, and demonstrates the risk of introducing hatchery fish into the wild.
    [Show full text]
  • Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units
    NOAA Technical Memorandum NMFS-NWFSC-53 Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units June 2002 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the Na­ tional Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible due to time constraints. Documents published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Waknitz, F.W., T.J. Tynan, C.E. Nash, R.N. Iwamoto, and L.G. Rutter. 2002. Review of potential impacts of Atlantic salmon culture on Puget Sound chinook salmon and Hood Canal summer-run chum salmon evolutionarily significant units. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-53, 83 p. NOAA Technical Memorandum NMFS-NWFSC-53 Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon Evolutionarily Significant Units F.
    [Show full text]
  • Variation in Salmonid Life Histories: Patterns and Perspectives
    United States Department of Agriculture Variation in Salmonid Life Forest Service Histories: Patterns and Pacific Northwest Research Station Perspectives Research Paper PNW-RP-498 Mary F. Willson February 1997 Author MARY F. WILLSON is a research ecologist, Forestry Sciences Laboratory, 2770 Sherwood Lane, Juneau, AK 98801. Abstract Willson, Mary F. 1997. Variation in salmonid life histories: patterns and perspectives. Res. Pap. PNW-RP-498. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 50 p. Salmonid fishes differ in degree of anadromy, age of maturation, frequency of repro- duction, body size and fecundity, sexual dimorphism, breeding season, morphology, and, to a lesser degree, parental care. Patterns of variation and their possible signif- icance for ecology and evolution and for resource management are the focus of this review. Keywords: Salmon, char, Oncorhynchus, Salmo, Salvelinus, life history, sexual dimor- phism, age of maturation, semelparity, anadromy, phenology, phenotypic variation, parental care, speciation. Summary Salmonid fishes differ in degree of anadromy, age of maturation, frequency of reproduction, body size and fecundity, sexual dimorphism, breeding season, morphology, and to a lesser degree, parental care. The advantages of large body size in reproductive competition probably favored the evolution of ocean foraging, and the advantages of safe breeding sites probably favored freshwater spawning. Both long-distance migrations and reproductive competition may have favored the evolution of semelparity. Reproductive competition has favored the evolution of secondary sexual characters, alternative mating tactics, and probably nest-defense behavior. Salmonids provide good examples of character divergence in response to ecological release and of parallel evolution. The great phenotypic plasticity of these fishes may facilitate speciation.
    [Show full text]
  • The Effect of Static Magnetic Field on Danube Huchen, Hucho Hucho (L.) Sperm Motility Parameters
    Arch. Pol. Fish. (2013) 21: 189-197 DOI 10.2478/aopf-2013-0016 RESEARCH ARTICLE The effect of static magnetic field on Danube huchen, Hucho hucho (L.) sperm motility parameters Krzysztof Formicki, Joanna Szulc, Adam Tañski, Agata Korzelecka-Orkisz, Andrzej Witkowski, Przemys³aw Kwiatkowski Received – 21 May 2013/Accepted – 01 August 2013. Published online: 30 September 2013; ©Inland Fisheries Institute in Olsztyn, Poland Citation: Formicki K., Szulc J., Tañski A., Korzelecka-Orkisz A., Witkowski A., Kwiatkowski P. 2013 – The effect of static magnetic field on Danube huchen, Hucho hucho (L.) sperm motility parameters – Arch. Pol. Fish. 21: 189-197. Abstract. The distribution range of Danube huchen, Hucho exposing sperm to magnetic fields might, after more extensive hucho (L.) in Polish waters is decreasing, and is currently only studies, could be used for short-term sperm storage. 25 to 30% of its original area. Since few data are available concerning Danube huchen, it is necessary to develop a better Keywords: Huchen, sperm motility (CASA), morphology, understanding of its reproduction to improve artificial fertilization, magnetic field spawning in hatcheries. Eight sperm motility parameters were assessed using CASA after short-term storage in a static magnetic field. The effect of magnetic field exposure on spermatozoa at fertilization and on sperm morphology (SEM) Introduction was also examined. Static magnetic fields had a positive effect on sperm motility parameters, including VCL, which The Danube huchen, Hucho hucho (L.), is the largest determines fertilization effectiveness; values for this representative of the Salmonidae. Until recently, the parameter after a 24 h exposure period to fields of different species inhabited the Danube River and most of its intensity were as follows: 1 mT – 110.09 μm s-1;5mT– -1 -1 submontane tributaries.
    [Show full text]
  • Attention California Ocean Salmon Anglers
    Attention California Ocean Salmon Anglers Please check your catch! Coho salmon are frequently contacted in California’s ocean fisheries. Although some of these salmon may have originated from Oregon or Washington, many are California coastal coho salmon, which are protected under the Endangered Species Act. Thus the retention of coho salmon is PROHIBITED in all California ocean fisheries. Please take the time to correctly identify each salmon caught before removing it from the water. All coho must be released. *Photo by CDFW Warden Bob Aldrich Help avoid contacting coho salmon: Rig to fish deeper - coho are more often in the top 30 feet of water. Fish nearshore for Chinook - coho are usually more offshore. Use large lures that select for larger Chinook and reduce coho catch. For additional information, please check the CDFW website at www.dfg.ca.gov/marine/oceansalmon.asp or call the Ocean Salmon Hotline at (707) 576-3429 Note: A few pink salmon have been caught in past seasons, usually in odd numbered years. Pink salmon are generally smaller than Chinook and coho salmon and can be identified by the large, oval- shaped spots found on their back and on both lobes of the tail fin. Their scales are very small and number over 168 in the row above the lateral line. The minimum size limit in California for pink salmon is the same as Chinook. The daily bag/possession limit remains 2 salmon of any species except coho. .
    [Show full text]
  • HOW to IDENTIFY the FIVE SALMON SPECIES Found in the KODIAK ISLAND/ALASKA PENINSULA AREA
    HOW TO IDENTIFY the FIVE SALMON SPECIES found in the KODIAK ISLAND/ALASKA PENINSULA AREA KING (CHINOOK) SALMON: COHO (SILVER) SALMON: Greenish-blue Blue-gray back with silvery sides. Small, irregular- back with silvery sides. Small black spots on the back, shaped black spots on back, dorsal fi n, and usually on dorsal fi n, and both lobes of the tail. usually on Black mouth with white upper lobe gums at base of teeth on of tail lower jaw. only. Spawning coho salmon adults develop Black mouth with black gums greenish-black heads and dark brown to at base of teeth on lower jaw. maroon bodies. Salmon mouth illustrations courtesy of California Department Fish and Game SOCKEYE (RED) SALMON: Dark blue-black back with silvery sides. No distinct Spawning spots on back, king salmon dorsal fi n, adults lose their or tail. silvery bright color and take Spawning sockeye salmon adults develop dull on a maroon to olive brown color. green colored heads and brick-red to scarlet bodies. CHUM (DOG) SALMON: Dull gray back PINK SALMON (HUMPIES): with yellowish-silver sides. Very large spots on the back No distinct spots on back and large black oval blotches or tail. Large eye pupil— on both tail lobes. Very small covers nearly the entire eye. scales. Spawning adults take on a dull gray coloration on the back and Spawning adults develop olive green upper sides with a creamy white coloration on the back with maroon color below. Males develop a sides covered with irregular dull red pronounced hump. bars. Males exhibit many large canine- like teeth.
    [Show full text]
  • Acquisition of Potential for Sperm Motility in Rainbow Trout and Chum Salmon
    J. exp. Biol. 126, 89-96 (1986) 89 Printed in Great Britain © The Company of Biologists Limited 1986 ACQUISITION OF POTENTIAL FOR SPERM MOTILITY IN RAINBOW TROUT AND CHUM SALMON BY SACHIKO MORISAWA Biological Laboratory, St Marianna University, School of Medicine, 2095 Sugao, Miyamae-ku, Kawasaki 213, Japan AND MASAAKI MORISAWA Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164, Japan Accepted 17 July 1986 SUMMARY The male reproductive organ of rainbow trout and chum salmon consists of a pair of testes and sperm ducts. Spermatozoa in the distal portion of the sperm ducts exhibit full motility in the K+-free medium. However, spermatozoa from the testis were almost immotile in this medium. This suggests that the spermatozoa acquire a capacity for movement during their passage from the testis along the sperm duct. In chum salmon migrating into a bay, the sperm duct was almost empty. However, after the fish have travelled upstream for 1 km to their spawning ground in the river, the spermatozoa have left the testis, moved into the sperm duct and are capable of becoming motile. Thus it is probable that the process of acquiring the ability to move occurs within a relatively short period in this simple reproductive organ. Additionally, testicular spermatozoa demembranated with Triton X-100 exhibited motility, although the motility was less than that of demembranated spermatozoa from the sperm duct, suggesting that the acquisition of motility may correspond with the development of some function of the plasma membrane. INTRODUCTION Since Tournade (1913) demonstrated that mammalian spermatozoa acquire mo- tility during transit through the epididymis from the caput to the cauda after spermiation, much effort has been devoted to understanding the mechanism of this phenomenon (Hoskins, Brandt & Acott, 1978).
    [Show full text]
  • Official Fish List
    State-Fish Art Contest Official Fish List Freshwater Fish Species SUNFISH FAMILY SALMONIDAE (SALMON) FAMILY Bluegill Lepomis macrochirus Apache Trout—WNTA Oncorhynchus apache Florida Largemouth Bass Micropterus salmoides floridanus Arctic grayling—WNTA Thymallus arcticus Guadalupe Bass Micropterus treculii Blueback Char Salvelinus alpinus oquassa Largemouth Bass Micropterus salmoides Bull Trout—WNTA Salvelinus confluentus Longear Sunfish Lepomis megalotis California Golden Trout—WNTA Oncorhynchus aguabonita White Bass (Sand Bass) Morone chrysops Gila Trout—WNTA Oncorhynchus gilae Smallmouth Bass Micropterus dolomieu Landlocked Atlantic Salmon Salmo salar Spotted Bass Micropterus punctulatus Rainbow Trout Oncorhynchus mykiss Suwannee Bass Micropterus notius Brook Trout Salvelinus fontinalis PIKE FAMILY Southern Appalachian Brook Trout Muskellunge Esox masquinongy West Virginia Golden Brook Trout Northern Pike Esox lucius Cutthroat Trout Oncorhynchus clarkii PERCH FAMILY Bonneville Cutthroat Trout—WNTA Oncorhynchus clarkii utah Walleye Sander vitreus Coastal Cutthroat Trout —WNTA Oncorhynchus clarkii clarkii White Perch Morone americana Colorado River Cutthroat Trout —WNTA Oncorhynchus clarkii pleuriticus Greenback Cutthroat Trout—WNTA Oncorhynchus clarki stomias CATFISH FAMILY Lahontan Cutthroat Trout—WNTA Oncorhynchus clarkii henshawi Channel Catfish Ictalurus punctatus Rio Grande Cutthroat Trout—WNTA Oncorhynchus clarkii virginalis Yaqui Catfish Ictalurus pricei Westslope Cutthroat Trout—WNTA Oncorhynchus clarkii lewisi Yellowstone Cutthroat
    [Show full text]
  • Pink Salmon Chances for Survival: Very Poor 1 Oncorhynchus Gorbuscha
    Pink Salmon chances for survival: very poor 1 Oncorhynchus gorbuscha ink salmon are the smallest of the pacific salmon, with adults usually 18 disTriBuTion: spawning pink salmon ascend coastal StaTus 1: pink salmon are considered extirpated from 1 2 3 4 5 SALMON streams of northern asia, from Korea and Japan, and along California, except for occasional strays. however, recent to 25 inches in length. spawning males have a pronounced hump (and the coast of North america south to California. in California, reports of a spawning run in the Garcia river suggest that are often called humpback salmon) with a snout that is greatly enlarged there are records from many coastal streams but spawning a small population may have been overlooked. it is highly in recent years has only been recorded in the Garcia, russian, likely that pink salmon will disappear completely from p Pink Salmon Distribution and hooked. the body color is dark purplish, especially on the head and back. and sacramento rivers, as well as redwood Creek. California streams in the future, although it is possible aBundanCe: pink salmon are extremely abundant in that these populations periodically go extinct and then spawning females resemble trout in general body shape and are paler in color. alaska and Canada and support major commercial fisheries re-establish when pink salmon are abundant elsewhere. ConservaTion reCommendaTions: Nothing is known about the genetic background of California pink salmon, but there. California is the southern edge of the species’ range so the first step they have never been common here. however, given that pink in conservation of pink salmon is to determine if there populations in Washington have spawning runs in odd years and are regarded as salmon spawn in the lower reaches of streams in autumn are any reproducing populations in California.
    [Show full text]