United States Patent (19) 11 Patent Number: 4,874,791 Adachi Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 4,874,791 Adachi Et Al United States Patent (19) 11 Patent Number: 4,874,791 Adachi et al. (45) Date of Patent: Oct. 17, 1989 (54. STIMULATION OF HAIR GROWTH WITH ALPHATC CARBOXYTLIC ACDS FOREIGN PATENT DOCUMENTS 75 Inventors: Kuniaki Adachi, Odawara; Hideo 2477871 9/1981 France . Tamai, Kanagawa; Masanao Sadai, 1469988 4/1977 United Kingdom...... A61 K/31/125 Hiratsuka, all of Japan OTHER PUBLICATIONS 73) Assignee: Lion Corporation, Tokyo, Japan Chemical Abstracts, vol. 10G, (1987), #201540g; Oono et al. 21 Appl. No.: 923,902 Chemical Abstracts, vol. 102, (1985), #137579g; Adachi 22 Filed: Oct. 28, 1986 et al. Chemical Abstracts; vol. 84, (1976), #35202d, Menyailo Related U.S. Application Data et al. 63 Continuation of Ser. No. 724,354, Apr. 18, 1985, aban Vol. 3, No. 152(C-67), Dec. 14, 1979, and JP-A-54 129 doned, which is a continuation of Ser. No. 518,447, Jul. 135, Jun. 10, 1979. 29, 1983, abandoned. Primary Examiner-Douglas W. Robinson 30 Foreign Application Priority Data Assistant Examiner-Joseph A. Lipovsky Aug. 10, 1982 JP Japan ................................ 57-137909 Attorney, Agent, or Firm-Bacon & Thomas 511 Int. Cl.".............................................. A61K 31/20 57 ABSTRACT 52 U.S. Cl. ............... ... 514/558; 514/880 A hair-growing agent which exhibits a strong hair 58) Field of Search ........................ 514/557, 558,560 growing effect. The hair-growing agent according to (56) References Cited the present invention contains as an effective ingredient U.S. PATENT DOCUMENTS an aliphatic carboxylic acid having an odd number of carbon atoms or a derivative thereof. 4,139,619, 2/1979 Chidsey, III .......................... 424/45 4,263,313 4/1981 Eckett et al. .... ... 514/558 4,745,103 5/1988 Oono et al. ......................... 514/558 10 Claims, No Drawings 4,874,791 1. 2 The aliphatic carboxylic acid to be used for the hair STMULATION OF HAR GROWTH WITH growing agent according to the present invention may ALPHATIC CARBOXYTLCACDS be a saturated or unsaturated aliphatic carboxylic acid provided it has an odd number of carbon atoms. The This case is a continuation of Ser. No. 724,354 filed 5 unsaturated aliphatic carboxylic acid may contain a 4/18/85, now abandoned, which is in turn a continua plurality of double bonds. The aliphatic carboxylic acid tion of Ser. No. 518,447 filed 7/29/83, now abandoned. may be a lower aliphatic carboxylic acid such as propi BACKGROUND OF THE INVENTION onic acid (having 3 carbon atoms) or valeric acid (hav I. Field of the Invention 10 ing 5 carbon atoms), or a higher aliphatic carboxylic The present invention relates to a hair-growing agent. acid such as tricosanoic acid (having 23 carbon atoms) II. Description of the Prior Art or pentacosanoic acid (having 25 carbon atoms). Pre Hair-growing agents containing various agents exhib ferred aliphatic carboxylic acids having an odd number iting pharmaceutical properties are known. Such phar of carbon atoms may include propionic acid, Valeric maceutical agents may include, for example, a vitamin 15 acid, heptanoic acid, nonanoic acid, undecanoic acid, such as vitamin E, an amino acid such as serine or me tridecanoic acid, pentadecanoic acid, heptadecanoic thionine, a vasodilator such as acetylcholine derivative, acid, nonadecanoic acid, heneicosanoic acid, tricosa an anti-inflammatory agent such as lithospermum root noic acid and pentacosanoic acid. extract, a female sex hormone such as estradiol, a skin For the hair-growing agent according to the present function stimulant such as cepharanthine, a melanine synthesis catalyst such as copper pantothenate, a kera invention, any derivative of an aliphatic carboxylic acid tolytic such as salicylic acid, or the like. These agents having an odd number of carbon atoms are enumerated may assist in the prevention and cure of allopecia. hereinabove may be used an an effective ingredient. There are known cases where an aliphatic carboxylic However, needless to say, any compound which may acid or a derivative thereof such as natural vegetable 25 adversely affect the human body cannot be used. Pre oil, e.g., olive oil and castor oil, or stearic acid is con ferred derivatives include the following. tained in a hair cosmetic such as a hair tonic or the like (A) a monoglyceride represented by the general for to improve performance of the product. Aliphatic car mula (I) or (II): boxylic acids constituting various naturally occurring lipids, such as vegetable oils and animal oils, are in 30 almost all cases aliphatic carboxylic acids having an fHocoR, (I) even number of carbon atoms, whether they are satu (HOH) rated aliphatic carboxylic acids such as stearic acid and CH2(OH) palmitic acid or unsaturated aliphatic carboxylic acids such as oleic acid and linoleic acid. There are no known 35 CH2(CH) (II) cases where an aliphatic carboxylic acid having an odd CHOCOR1 number of carbon atoms or a derivative thereof is used in a hair cosmetic. th.OH) Conventional hair-growing agents are claimed to be effective in preventing or improving dandruff, itchiness where R1 is a straight-chain aliphatic group having an and hair loss as well as in accelerating hair generation even number of carbon atoms. and growth. However, it seems that a satisfactory effect (B) a diglyceride represented by the general formula has not yet been obtained. (III) or (IV): SUMMARY OF THE INVENTION 45 Therefore, the object of the present invention is to HocOR: (III) provide a hair-growing agent exhibiting a strong hair CHOCOR3 growing effect. The object can be accomplished by providing a hair th.OH) growing agent comprising as an effective ingredient an 50 CHOCOR2 (IV) aliphatic carboxylic acid having an odd number of car bon atoms or a derivative thereof. HOH) The hair-growing agent according to the present CHOCOR3 invention provides a strong hair-growing effect. 55 DETAILED DESCRIPTION OF THE where at least one of R2 and R3 is a straight-chain ali PREFERRED EMBODIMENTS phatic group having an even number of carbon atoms. It should be noted here that the effect to be accomplished Alopecia may arise from various causes. In each case, by the present invention can be achieved if either R2 or individual hairs cannot complete their normal hair cycle R3 represents an aliphatic group having an even number to reach the telogen state. In order to decrease baldness and accelerate hair generation, it is necessary to bring of carbon atoms while the other represents a hydrogen the hair follicles from the telogen state into the normal or an aliphatic group having an odd number of carbon anagen state. As a result of extensive research into the atoms or another organic group which does not ad conversion of hair from the telogen state into the ana versely affect the human body. However, a diglyceride gen state, it has been found that an aliphatic carboxylic 65 of an aliphatic carboxylic acid having an odd number of acid having an odd number of carbon atoms and a deriv carbon atoms is particularly preferred. ative thereof exhibit a remarkable hair-growing effect. (C) a triglyceride represented by the general formula The present invention is based on this finding. (V): 4,874,791 CHOCOR4 (V) Ricocort (X) HOCOR: COR18 CH2OCOR6 where at least one of R16, R17 and R18 are straight-chain where at least one of R4, R5 and Ró is a straight-chain aliphatic group having an even number of carbon aliphatic group having an even number of carbon atoms. It is to be noted that where at least one of R16, atoms. It should be noted here that, where at least one R17 and R18 is an organic group with an even number of of R4, R5 and R5 is a aliphatic group having an even 10 carbon atoms, the present invention can achieve the number of carbon atoms, the effect sought by the pres desired effect, and also that the others may each be any ent invention can be achieved even if the others are in organic group exerting no adverse influence on the each case hydrogen or an aliphatic group having an odd human body. However, it is particularly preferred that number of carbon atoms or another organic group all three be independently a straight-chain aliphatic which does not adversely affect the human body. How 15 ever, a triglyceride of an aliphatic carboxylic acid hav group having an even number of carbon atoms. ing an odd number of carbon atoms is particularly pre (I) a dibasic carboxylic acid represented by the gen ferred. eral formula (XI) or a salt thereof; (D) an aliphatic carboxylic acid salt represented by the general formula (VI): 20 HOOCR19COOH (XI) (R7COO)M (VI) where R19 is a straight-chain aliphatic group having an odd number of carbon atoms. where R7 is a straight-chain aliphatic group having an (J) a sterol ester represented by the general formula even number of carbon atoms, Mis a metal atom, and n 25 (XII): is an integer corresponding the valence of M. Repre sentatives may be R7COONa, R7COOK and R7COOLi. (E) an ester represented by the general formula (VII): (XII) R3COOR9 (VIII) 30 where R8 is a straight-chain aliphatic group having an even number of carbon atoms, R9 is a residue of a pri mary or secondary alcohol, an amine residue, a poly oxyethylene residue, a sorbitan residue or a sucrose 35 R20COO residue. A representative primary alcohol may be meth anol and ethanol and a representative amine residue is mono-, di- and tri-ethanolamine. where R20 is a straight-chain aliphatic group having an (F) a primary amide represented by the general for even number of carbon atoms. mula (VIII): 40 (K) a phospholipid represented by the general for mula (XIII): R10CONR11R12 (VIII) where R10 is a straight-chain aliphatic group having an CH2OCOR21 (XIII) even number of carbon atoms, and R11 and R12 are 45 (HOCOR: independently a hydrogen atom or an organic group CH-O O having no adverse effect on the human body.
Recommended publications
  • 01 Excipients Prelims 1..9
    Triolein 757 and tablets). Included in the Canadian List of Acceptable Non- 3 Steurnagel CR. Latex emulsions for controlled drug delivery. McGinity medicinal Ingredients. JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 1–61. 4 Gutierrez-Rocca JC, McGinity JW. Influence of aging on the physical– 17 Related Substances mechanical properties of acrylic resin films cast from aqueous Acetyltributyl citrate; acetyltriethyl citrate; tributyl citrate. dispersions and organic solutions. Drug Dev Ind Pharm 1993; 19(3): 315–332. 5 Liu J, Williams R. Properties of heat-humidity cured cellulose acetate 18 Comments phthalate free films. Eur J Pharm Sci 2002; 17(1–2): 31–41. 6 Lewis RJ, ed. Sax’s Dangerous Properties of Industrial Materials, 11th A specification for triethyl citrate is contained in the Food (7) edn. New York: Wiley, 2004; 3546. Chemicals Codex (FCC). 7 Food Chemicals Codex, 6th edn. Bethesda, MD: United States The EINECS number for triethyl citrate is 201-070-7. The Pharmacopeia, 2008; 988. PubChem Compound ID (CID) for triethyl citrate is 6506. 20 General References 19 Specific References Vertellus Specialties Inc. Technical data sheet: Citroflex 2, 2007. 1 Gutierrez-Rocca JC, McGinity JW. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of 21 Author acrylic resin copolymers. Int J Pharm 1994; 103: 293–301. J Teckoe. 2 Lehmann K. Chemistry and application properties of polymethacrylate coating systems. McGinity JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 153– 22 Date of Revision 245. 24 February 2009. Triolein 1 Nonproprietary Names 6 Functional Category None adopted.
    [Show full text]
  • Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke – a Pilot Study
    RESEARCH ARTICLE Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke ± A Pilot Study Dirk Berressem1*, Konrad Koch1, Nicole Franke1, Jochen Klein1, Gunter P. Eckert1,2 1 Goethe-University of Frankfurt, Department of Pharmacology, Germany, 2 Justus-Liebig-University Giessen, Institute of Nutritional Sciences, Germany * [email protected] a11111 Abstract Single long-chain omega-3 fatty acids (e.g. docosahexaenoic acid (DHA) or eicosapentae- noic acid (EPA)) are known for their neuroprotective properties associated with ischemic stroke. This pilot study aimed to test the effectiveness of an acute treatment with a long- OPEN ACCESS chain omega-3 lipid emulsion (Omegaven 10%®, OGV) that contains fish oil (DHA 18 mg/ Citation: Berressem D, Koch K, Franke N, Klein J, Eckert GP (2016) Intravenous Treatment with a ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml) in a transient middle cerebral artery occlu- Long-Chain Omega-3 Lipid Emulsion Provides sion (MCAO) model of ischemic stroke in mice. For this purpose, female CD-1 mice were Neuroprotection in a Murine Model of Ischemic anesthetized and subjected to 90 minutes of MCAO. To reflect a clinically relevant situation Stroke ± A Pilot Study. PLoS ONE 11(11): for an acute treatment, either after induction of stroke or after reperfusion, a single dose of e0167329. doi:10.1371/journal.pone.0167329 OGV was injected intravenously into the tail vein (5 ml/kg b.w.). A neurological severity Editor: Muzamil Ahmad, Indian Institute of score was used to assess motor function and neurological outcome.
    [Show full text]
  • Triheptanoin for Glucose Transporter Type I Deficiency (G1D) Modulation of Human Ictogenesis, Cerebral Metabolic Rate, and Cognitive Indices by a Food Supplement
    Research Original Investigation Triheptanoin for Glucose Transporter Type I Deficiency (G1D) Modulation of Human Ictogenesis, Cerebral Metabolic Rate, and Cognitive Indices by a Food Supplement Juan M. Pascual, MD, PhD; Peiying Liu, PhD; Deng Mao, BS; Dorothy I. Kelly, MA; Ana Hernandez, MS; Min Sheng, PhD; Levi B. Good, PhD; Qian Ma, MD, PhD; Isaac Marin-Valencia, MD, MS; Xuchen Zhang, MD; Jason Y. Park, MD, PhD; Linda S. Hynan, PhD; Peter Stavinoha, PhD; Charles R. Roe, MD; Hanzhang Lu, PhD Supplemental content at IMPORTANCE Disorders of brain metabolism are multiform in their mechanisms and jamaneurology.com manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. OBJECTIVE To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. DESIGN, SETTING, AND PARTICIPANTS Unsponsored, open-label cases series conducted in an academic setting.
    [Show full text]
  • 6 Minute Walk Results
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date r i 1 /1 i 22 December 2011 (22.12.2011) » 2U1 1/159634ft Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/23 (2006.01) A61P 3/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/040234 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, JL, IN, IS, JP, KE, KG, KM, KN, KP, 13 June 201 1 (13.06.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/354,472 14 June 2010 (14.06.2010) US (84) Designated States (unless otherwise indicated, for every 13/159,329 13 June 201 1 (13.06.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): BAY¬ ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, LOR RESEARCH INSTITUTE [US/US]; 33 10 Live TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Oak Street, Suite 501, Dallas, TX 75204 (US).
    [Show full text]
  • Chemoprevention in Kidney Cancer by Madhur Nayan
    Chemoprevention in Kidney Cancer by Madhur Nayan A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy in Clinical Epidemiology, Graduate Department of Health Policy, Management, and Evaluation, in the University of Toronto © Copyright by Madhur Nayan, 2017 THESIS ABSTRACT Thesis Title: Chemoprevention in kidney cancer Degree: Doctor of Philosophy (PhD) in Clinical Epidemiology Year of Convocation: 2017 Student: Madhur Nayan Graduate Department: Health Policy, Management and Evaluation University: University of Toronto Background: This thesis is a composition of three studies that explore the role of statins in kidney cancer. Furthermore, I evaluate the potential for different interpretations from the same data depending on the method of classifying medication use. Methods: The first study was a population-based case-control study evaluating the association of statin use with risk of incident kidney cancer. The second study was a systematic review and meta-analysis reviewing the current evidence relating statins with kidney cancer survival outcomes. The final study was a population-based cohort study evaluating the association of statin use with survival. In the observational studies, I used fractional polynomials for the primary analysis to allow for a non-linear relationship between cumulative exposure and the risk of the outcome. I also compared risk estimates obtained by different methods of classifying medication exposure. Results: The population-based case-control study included 10,377 incident cases of kidney cancer and 35,939 matched controls. Increasing cumulative use of statins was not associated with kidney cancer risk. I identified 12 studies for inclusion in the systematic review and meta- analysis and found that statin use was significantly associated with markedly improved cancer- specific and overall survival.
    [Show full text]
  • Larodan - Product Register Date: 200528 Author: FLN Product Number Product Name Product Information CAS Purity Supplied As Solution Concentration Number
    Larodan - Product Register Date: 200528 Author: FLN Product number Product name Product information CAS Purity Supplied as Solution Concentration number 10-0300 Trianoic acid, g 79-09-4 >99% Neat 10-0300-13 Trianoic acid, 1 g 79-09-4 >99% Neat 10-0300-17 Trianoic acid, 10 g 79-09-4 >99% Neat 10-0300-9 Trianoic acid, 100 mg 79-09-4 >99% Neat 10-0400 Tetranoic acid, g 107-92-6 >99% Neat 10-0400-13 Tetranoic acid, 1 g 107-92-6 >99% Neat 10-0400-17 Tetranoic acid, 10 g 107-92-6 >99% Neat 10-0400-9 Tetranoic acid, 100 mg 107-92-6 >99% Neat 10-0500 Pentanoic acid, g 109-52-4 >99% Neat 10-0500-13 Pentanoic acid, 1 g 109-52-4 >99% Neat 10-0500-17 Pentanoic acid, 10 g 109-52-4 >99% Neat 10-0500-9 Pentanoic acid, 100 mg 109-52-4 >99% Neat 10-0600 Hexanoic acid, g 142-62-1 >99% Neat 10-0600-13 Hexanoic acid, 1 g 142-62-1 >99% Neat 10-0600-17 Hexanoic acid, 10 g 142-62-1 >99% Neat 10-0600-9 Hexanoic acid, 100 mg 142-62-1 >99% Neat 10-0700 Heptanoic acid, g 111-14-8 >99% Neat 10-0700-13 Heptanoic acid, 1 g 111-14-8 >99% Neat 10-0700-16 Heptanoic acid, 5 g 111-14-8 >99% Neat 10-0700-9 Heptanoic acid, 100 mg 111-14-8 >99% Neat 10-0800 Octanoic acid, g 124-07-2 >99% Neat 10-0800-13 Octanoic acid, 1 g 124-07-2 >99% Neat 10-0800-17 Octanoic acid, 10 g 124-07-2 >99% Neat 10-0800-9 Octanoic acid, 100 mg 124-07-2 >99% Neat 10-0900 Nonanoic acid, g 112-05-0 >99% Neat 10-0900-13 Nonanoic acid, 1 g 112-05-0 >99% Neat 10-0900-16 Nonanoic acid, 5 g 112-05-0 >99% Neat 10-0900-9 Nonanoic acid, 100 mg 112-05-0 >99% Neat 10-1000 Decanoic acid, g 334-48-5 >99% Neat
    [Show full text]
  • Fatty Acids & Derivatives
    Conditions of Sale Validity The Conditions of Sale apply to the written text in this Catalogue superseding earlier texts related to such conditions. Intention of Use Our products are intended for research purposes only. Prices See under Order Information. All prices in this catalogue are net prices in Euro, ex works. Taxes, shipping costs or other external costs demanded by the buyer are invoiced. Delivery See under Order Information – shipping terms. Payment terms Payment terms are normally net 30 days. Deductions are not accepted unless we have issued a credit note. We accept payment by credit card (Visa/ Mastercard), bank transfer (wiring) or by cheque. If payment by cheque we will add a bank fee to our invoice. Complaints Complaints about a product or products must be made inside 30 days from the invoice date. All claims must specify batch (lot) and invoice numbers. Return of goods will not be accepted unless authorized by us. Insurance Insurance will not be made unless otherwise instructed. Delays We cannot accept compensation claims due to delays or non-deliveries. We reserve us the right to withdraw from delivery due to long term shortage of starting materials, production breakdown or other circumstances beyond our control. Warranty and All products in this catalogue are warranted to be free of defects and in Compensation Claims accordance with given specifications. If this warranty does not comply with specifications, any indemnities will be limited to not exceed the price paid for the goods. Acceptance Placing of an order implies acceptance of our conditions of sale. We accept credit cards (Visa/ Mastercard) www.larodan.se [email protected] +46 40 16 41 55 1 Ordering Information You can easily order from Larodan – please contact our local distributor or us by phone, e-mail, fax or letter.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0221978 A1 Gatto Et Al
    US 20090221978A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0221978 A1 Gatto et al. (43) Pub. Date: Sep. 3, 2009 (54) ABSORBENT ARTICLE WITH LOTION Publication Classification COMPRISINGAPOLY PROPYLENE GLYCOL (51) Int. Cl. MATERAL A6F 3/15 (2006.01) (76) Inventors: Joseph Anthony Gatto, Redondo (52) U.S. Cl. ................ 604/367; 604/385.23; 604/385.01 Beach, CA (US); Brent Taylor (57) ABSTRACT Ginn, Monroe, OH (US); Robert An absorbent article, such as a catamenial device, comprises Ya-lin Pan, Cincinnati, OH (US) a liquid pervious topsheet, the topsheet having an inner Sur face oriented toward the interior of the absorbent article and Correspondence Address: an outer surface oriented toward the skin of the wearer when THE PROCTER & GAMBLE COMPANY the absorbent article is being worn. The absorbent article Global Legal Department - IP includes a backsheet joined to the topsheet, the backsheet Sycamore Building - 4th Floor, 299 East Sixth having an inner surface oriented toward the interior of the Street absorbent article and an outer surface oriented toward the CINCINNATI, OH 45202 (US) garment of the wearer when the absorbent article is being worn. The absorbent article includes an absorbent core dis (21) Appl. No.: 12/369,922 posed between the topsheet and the backsheet, the absorbent core having an inner Surface oriented toward the skin of the (22) Filed: Feb. 12, 2009 wearer when the absorbent article is being worn and an outer surface oriented toward the garment of the wearer when the absorbent article is being worn. The absorbent article Related U.S.
    [Show full text]
  • Amended Safety Assessment of Triglycerides As Used in Cosmetics
    Amended Safety Assessment of Triglycerides as Used in Cosmetics Status: Re-Review for Panel Review Release Date: March 17, 2017 Panel Meeting Date: April 10-11, 2017 The 2017 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Monice M. Fiume, Assistant Director/Senior Scientific Analyst/Writer, and Bart Heldreth, Chemist. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Assistant Director/Senior Scientific Analyst Date: March 17, 2017 Subject: Amended Safety Assessment of Triglycerides as Used in Cosmetics Enclosed is the Safety Assessment of Triglycerides as Used in Cosmetics. (It is identified as trygly042017rep in the pdf document.) This is a re-review that is being initiated in accord with CIR’s Procedures to reassess previously- reviewed conclusions after a period of 15 years. In 2000, the Panel published a safety assessment of Trihydroxystearin with the conclusion, “Based on the available animal and clinical data, which included summary data from the CIR safety assessments of Hydroxystearic Acid and Glyceryl Stearate and Glyceryl Stearate SE, the Panel concluded that Trihydroxystearin is safe as used in cosmetics.” In 2015, the Panel re-evaluated the safety of Hydroxystearic Acid and Glyceryl Stearate and Glyceryl Stearate SE, reaffirming that Hydroxystearic Acid is safe as a cosmetic ingredient in the present practices of use and concluding that Glyceryl Stearate and Glyceryl Stearate SE are safe in the present practices of use and concentration.
    [Show full text]
  • NCT Number: 02036853 Sponsor: Cook Children’S Medical Center Primary Investigator: Adrian Lacy, MD
    Study Title: An Open-Label Trial of Triheptanoin in Patients with Glucose Transporter Type-1 Deficiency Syndrome(GLUT1 DS) Investigational Product: Triheptanoin Indication: Glucose Transporter Type-1 Deficiency Syndrome (GLUT1DS) IND Number: 120505 NCT Number: 02036853 Sponsor: Cook Children’s Medical Center Primary Investigator: Adrian Lacy, MD Cook Children’s Study Number: 2013-RNEU -001 Protocol Version Date: Version 4.1, 23-Mar-2018 Company: Ultragenyx Pharmaceutical, Inc. Study Site: Cook Children’s Medical Center, 801 7th Ave, Fort Worth, TX 76104 Phase of Development: Phase 2 IRB NUMBER: 2013-034 IRB APPROVAL DATE: 04/04/2019 IRB EXPIRATION DATE: 04/03/2020 Protocol Number: 2013-NEUR-001 Version: 4.1 23-Mar-2018 TABLE OF CONTENTS SECTION PAGE 1.0 STUDY OBJECTIVES 4 1.1 Primary Objectives 4 1.2 Secondary Objectives 4 2.0 BACKGROUND AND SIGNIFICANCE 4-7 2.1 Disease Background 4 2.2 Supporting Previous Studies 4 2.3 Protocol Rationale 7 3.0 STUDY DESIGN 7-8 3.1 Study Population 7 3.2 Number of Subjects Planned 7 3.3 Study Timeline 8 4.0 SELECTION AND ENROLLMENT OF SUBJECTS 9-10 4.1 Inclusion Criteria 9 4.2 Exclusion Criteria 9 4.3 Consent Procedures 10 5.0 METHODS 10-13 5.1 Recruitment of Subjects 10 5.2 Sources of Research Material 10 5.3 Duration of Treatment 11 5.4 Study Procedures 11 6.0 OBSERVATIONS AND MEASUREMENTS 14-16 6.1 Vineland Adaptive Behavior Scales, Second Edition 14 6.2 Barry-Albright Dystonia Scale 14 6.3 The Pediatric Quality of Life Inventory Scale 15 6.4 Columbia Suicide Severity Rating Scale 15 6.5 Tracking Diary
    [Show full text]
  • Redalyc.Hepatic Fatty Acid Profile of Rats Fed a Triheptanoin-Based
    Nutrición Hospitalaria ISSN: 0212-1611 info@nutriciónhospitalaria.com Grupo Aula Médica España Vieira de Melo, Ingrid Sofia; da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant’Ana, Antônio Euzébio Hepatic fatty acid profile of rats fed a triheptanoin-based ketogenic diet Nutrición Hospitalaria, vol. 32, núm. 1, 2015, pp. 265-269 Grupo Aula Médica Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=309239661038 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Nutr Hosp. 2015;32(1):265-269 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Original / Investigación animal Hepatic fatty acid profile of rats fed a triheptanoin-based ketogenic diet Ingrid Sofia Vieira de Melo1, Terezinha da Rocha Ataide2, Suzana Lima de Oliveira2, Nassib Bezerra Bueno2, Johnnatan Duarte de Freitas3 and Antônio Euzébio Goulart Sant’Ana4 1Departamento de Agroindústria, Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Murici, AL. 2Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL. 3Departamento de Tecnologia de Alimentos, Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Maceió - AL. 4Laboratório de Recursos Naturais, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brasil. Abstract PERFIL DE ÁCIDOS GRASOS DE HÍGADOS DE RATONES ALIMENTADOS CON UNA DIETA Objective: the aim of this study was to evaluate the in- CETOGÉNICA BASADA EN TRIHEPTANOÍNA fluence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacyl- glycerol, on the liver fatty acid profile of Wistar rats.
    [Show full text]
  • (MCT; C8) and Triheptanoin (C7) in Patients With
    ! A Comparison of the Digestion and Absorption of Medium-Chain Triglyceride (MCT; C8) and Triheptanoin (C7) in Patients with Long-Chain Fatty Acid Oxidation Disorders By Kayla K. Guillory A THESIS Presented to the Graduate Programs in Human Nutrition and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Master of Science in Clinical Nutrition June 2016 ! ! June 2016 School of Medicine Oregon Health Science University Certificate of Approval This is certifying that the Master’s thesis of Kayla K. Guillory has been approved Mentor/ Advisor Member Member ! ! Table of Contents Page List of Figures iv List of Tables v Abbreviations vi Units of Measure ix Acknowledgments x Abstract xi Chapter 1: Specific Aims 1 Chapter 2: Background 4 Chapter 3: Research Design 19 Chapter 4: Methods 23 Chapter 5: Statistical Analysis 24 Chapter 6: Results 35 Chapter 7: Discussion 57 References 62 Appendix 1: Free Fatty Acid Assay Procedure 65 Appendix 2: Evidence Table 66 i ! ! List of Figures Figure # Title Page Figure 1: β-Oxidation Cycle 8 Figure 2: Anaplerotic Mechanism of Triheptanoin (C7) 12 Figure 3: Macronutrient Composition of Standardized Meal 38 Figure 4: Plasma Free Fatty Acids 41 Figure 5: Medium-Chain Fatty Acid Profiles 44 Figure 6: Total Change in Plasma C8 and C7 after Mixed Meal 46 Figure 7: Long-Chain Fatty Acid Profiles 47 Figure 8: Cumulative Recovery 49 Figure 9: Ketones 52 Figure 10: Acylcarnitines 55 ii ! ! List of Tables Table # Title Page Table 1: Overall Study Design
    [Show full text]