Course Information

Total Page:16

File Type:pdf, Size:1020Kb

Course Information CS 591/491 Advanced Programming Techniques, Spring 2009 1 Preliminary version of 20 January Course Information Meetings Tuesdays and Thursdays, 2:00–3:15, in FEC345. Instructor Darko Stefanovic, office hours Tuesdays and Thursdays, 3:20–4:00 in ECE 236C. Course topics and format A seminar with readings and presentations on selected topics in typeful functional programming. Read- ings range from classics to current research, but emphasis is on tutorial articles on programming tech- niques, principally from the summer schools on advanced functional programming. Reading List / Lecture Plan This is a preliminary list of topics, which will be adjusted to reflect the interests of course participants. The pace will be adjusted as well; we may take more than one class period per paper if the discussion shows this is necessary. The sequence proposed below allows dropping the tail. I expect, however, that we will definitely cover topics 1–15. Any dropped topics will be covered in a seminar next year. Presenter name shown in italics. Week 1-2: Introduction 1 organizational; Haskell in brief [IFPH, Ch1-5; H9] Stefanovic 2 functional programming [H4] [T1] Stefanovic 3 trees with folds, binary heap trees, rose trees [IFPH, Ch6] Stefanovic Week 3: Efficiency 4 lazy evaluation, accumulating parameters, tupling [IFPH, Ch7] 5 fusion and deforestation [IFPH, Ch7] Week 4-6: Data structures 6 amortization; queues and splay heaps [O1] 7 red-black trees [O6] 8 more heap trees [O7] 9 tree traversal [O3] 10 tree access [H1] CS 591/491 Advanced Programming Techniques, Spring 2009 2 Week 7: Types and classes 11 type classes; constructor classes [W4] [J3] 12 extensions: multi-parameter type classes; functional dependencies in type classes [J2] 13 examples: math education [F1] Week 8-9: Combinators 14 intro to parsing combinators [F2] [H7] 15 pretty-printing combinators [H5] Week 10-11: Monads 16 monads, combining monads, monadic IO [W1] [IFPH, Ch10] 17 monads and other effects [PJ1] Week 12-13: More combinators 18 monadic parsing combinators [H8] [L3] 19 combinator languages [S1] 20 pretty printing [W3] 21 beyond monadic combinator parsing [S2] Week 14: Arrows 22 arrows [H3] Week 15: Functional reactive programming 23 Yampa [H10] Week 16: Various 24 types and matrices [O5] 25 origami programming [G2] Sources: Papers F1 Jeroen Fokker. Explaining algebraic theory with functional programs. F2 Jeroen Fokker. Functional parsers. G2 Jeremy Gibbons. Origami Programming. From “The Fun of Programming”, 2003. H1 G´erard Huet. The Zipper. JFP, 1997. H3 John Hughes. Generalising Monads to Arrows. 1998. SoCP 2000. H4 John Hughes. Why Functional Programming Matters. 1984. CJ 1989. H5 John Hughes. The Design of a Pretty-Printing Library. AFP. H7 Graham Hutton. Higher-Order Functions for Parsing. JFP, 1992. CS 591/491 Advanced Programming Techniques, Spring 2009 3 H8 Graham Hutton and Erik Meijer. Monadic Parsing Combinators. H9 Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History of Haskell: being lazy with class. HOPL-III, 2007. H10 Paul Hudak, Henrik Nilsson, Anthony Courtney, and John Peterson. Arrows, Robots, and Func- tional Reactive Programming. AFP 2002. J2 Mark P. Jones and Iavor Diatchki. Language and Program Design for Functional Dependencies. HW, 2008. J3 Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymor- phism. FPCA, 1993. L3 Daan Leijen and Erik Meijer. Direct Style Monadic Parser Combinators For The Real World. O1 Chris Okasaki. Functional Data Structures, AFP. O3 Chris Okasaki. Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design. ICFP, 2000. O5 Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure in Types. ICFP, 1999. O6 Chris Okasaki. Red-Black Trees in a Functional Setting. JFP, 1999. O7 Chris Okasaki. Fun with binary heap trees. From “The Fun of Programming”, 2003. PJ1 Simon Peyton Jones. Tackling the Awkward Squad. S1 S. Doaitse Swierstra, Pablo R. Azero Alcocer, and Jo˜ao Saraiva. Designing and Implementing Combinator languages. AFP. S2 S. Doaitse Swierstra and Luc Duponcheel. Deterministic, Error-Correting Parsers. AFP. T1 Simon Thompson. Where do I begin? A problem solving approach in teaching functional pro- gramming. W1 Philip Wadler. Monads for Functional Programming. AFP. W3 Philip Wadler. A prettier printer. From “The Fun of Programming”, 2003. W4 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc, POPL 1989. Sources: Books IFPH Richard Bird. Introduction to Functional Programming using Haskell, Prentice Hall, 2nd edition, 1998, ISBN-10: 0134843460 CS 591/491 Advanced Programming Techniques, Spring 2009 4 Presentations Presentations should be around 40 minutes long, to allow time for discussion. Prepared slides are rec- ommended but not required; you may use a few slides from the author’s or someone else’s presentation, with acknowledgement. Most of the papers we will read describe implementations of particular programs or libraries. A good presentation will develop new examples and (update and) test the code. There will be a mechanism for peer review of presentation quality, and it will be part of the course grade. Grading Presentation preparedness and quality, in-depth analysis of material, participation in the discussion. Mailing list A mailing list will be used for class discussion. It may also be used for administrative announcements. UNM statement of compliance with ADA Qualified students with disabilities needing appropriate academic adjustments should contact the in- structor as soon as possible to ensure their needs are met in a timely manner. Handouts are available in alternative accessible formats upon request..
Recommended publications
  • Structure Interpretation of Text Formats
    1 1 Structure Interpretation of Text Formats 2 3 SUMIT GULWANI, Microsoft, USA 4 VU LE, Microsoft, USA 5 6 ARJUN RADHAKRISHNA, Microsoft, USA 7 IVAN RADIČEK, Microsoft, Austria 8 MOHAMMAD RAZA, Microsoft, USA 9 Data repositories often consist of text files in a wide variety of standard formats, ad-hoc formats, aswell 10 mixtures of formats where data in one format is embedded into a different format. It is therefore a significant 11 challenge to parse these files into a structured tabular form, which is important to enable any downstream 12 data processing. 13 We present Unravel, an extensible framework for structure interpretation of ad-hoc formats. Unravel 14 can automatically, with no user input, extract tabular data from a diverse range of standard, ad-hoc and 15 mixed format files. The framework is also easily extensible to add support for previously unseen formats, 16 and also supports interactivity from the user in terms of examples to guide the system when specialized data extraction is desired. Our key insight is to allow arbitrary combination of extraction and parsing techniques 17 through a concept called partial structures. Partial structures act as a common language through which the file 18 structure can be shared and refined by different techniques. This makes Unravel more powerful than applying 19 the individual techniques in parallel or sequentially. Further, with this rule-based extensible approach, we 20 introduce the novel notion of re-interpretation where the variety of techniques supported by our system can 21 be exploited to improve accuracy while optimizing for particular quality measures or restricted environments.
    [Show full text]
  • The Marriage of Effects and Monads
    The Marriage of Effects and Monads PHILIP WADLER Avaya Labs and PETER THIEMANN Universit¨at Freiburg Gifford and others proposed an effect typing discipline to delimit the scope of computational ef- fects within a program, while Moggi and others proposed monads for much the same purpose. Here we marry effects to monads, uniting two previously separate lines of research. In partic- ular, we show that the type, region, and effect system of Talpin and Jouvelot carries over di- rectly to an analogous system for monads, including a type and effect reconstruction algorithm. The same technique should allow one to transpose any effect system into a corresponding monad system. Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages— Operational semantics General Terms: Languages, Theory Additional Key Words and Phrases: Monad, effect, type, region, type reconstruction 1. INTRODUCTION Computational effects, such as state or continuations, are powerful medicine. If taken as directed they may cure a nasty bug, but one must be wary of the side effects. For this reason, many researchers in computing seek to exploit the benefits of computational effects while delimiting their scope. Two such lines of research are the effect typing discipline, proposed by Gifford and Lucassen [Gifford and Lucassen 1986; Lucassen 1987], and pursued by Talpin and Jouvelot [Talpin and Jouvelot 1992, 1994; Talpin 1993] among others, and the use of monads, proposed by Moggi [1989, 1990], and pursued by Wadler [1990, 1992, 1993, 1995] among others. Effect systems are typically found in strict languages, such as FX [Gifford et al.
    [Show full text]
  • The Power of Higher-Order Composition Languages in System Design
    The Power of Higher-Order Composition Languages in System Design James Adam Cataldo Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-189 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-189.html December 18, 2006 Copyright © 2006, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. The Power of Higher-Order Composition Languages in System Design by James Adam Cataldo B.S. (Washington University in St. Louis) 2001 M.S. (University of California, Berkeley) 2003 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Edward Lee, Chair Professor Alberto Sangiovanni-Vincentelli Professor Raja Sengupta Fall 2006 The dissertation of James Adam Cataldo is approved: Chair Date Date Date University of California, Berkeley Fall 2006 The Power of Higher-Order Composition Languages in System Design Copyright 2006 by James Adam Cataldo 1 Abstract The Power of Higher-Order Composition Languages in System Design by James Adam Cataldo Doctor of Philosophy in Electrical Engineering University of California, Berkeley Professor Edward Lee, Chair This dissertation shows the power of higher-order composition languages in system design.
    [Show full text]
  • A Critique of Abelson and Sussman Why Calculating Is Better Than
    A critique of Abelson and Sussman - or - Why calculating is better than scheming Philip Wadler Programming Research Group 11 Keble Road Oxford, OX1 3QD Abelson and Sussman is taught [Abelson and Sussman 1985a, b]. Instead of emphasizing a particular programming language, they emphasize standard engineering techniques as they apply to programming. Still, their textbook is intimately tied to the Scheme dialect of Lisp. I believe that the same approach used in their text, if applied to a language such as KRC or Miranda, would result in an even better introduction to programming as an engineering discipline. My belief has strengthened as my experience in teaching with Scheme and with KRC has increased. - This paper contrasts teaching in Scheme to teaching in KRC and Miranda, particularly with reference to Abelson and Sussman's text. Scheme is a "~dly-scoped dialect of Lisp [Steele and Sussman 19781; languages in a similar style are T [Rees and Adams 19821 and Common Lisp [Steele 19821. KRC is a functional language in an equational style [Turner 19811; its successor is Miranda [Turner 1985k languages in a similar style are SASL [Turner 1976, Richards 19841 LML [Augustsson 19841, and Orwell [Wadler 1984bl. (Only readers who know that KRC stands for "Kent Recursive Calculator" will have understood the title of this There are four language features absent in Scheme and present in KRC/Miranda that are important: 1. Pattern-matching. 2. A syntax close to traditional mathematical notation. 3. A static type discipline and user-defined types. 4. Lazy evaluation. KRC and SASL do not have a type discipline, so point 3 applies only to Miranda, Philip Wadhr Why Calculating is Better than Scheming 2 b LML,and Orwell.
    [Show full text]
  • Richard S. Uhler
    Smten and the Art of Satisfiability-Based Search by Richard S. Uhler B.S., University of California, Los Angeles (2008) S.M., Massachusetts Institute of Technology (2010) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2014 c Massachusetts Institute of Technology 2014. All rights reserved. Author.............................................................. Department of Electrical Engineering and Computer Science August 22, 2014 Certified by. Jack B. Dennis Professor of Computer Science and Engineering Emeritus Thesis Supervisor Accepted by . Leslie A. Kolodziejski Chairman, Committee for Graduate Students 2 Smten and the Art of Satisfiability-Based Search by Richard S. Uhler Submitted to the Department of Electrical Engineering and Computer Science on August 22, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Science Abstract Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) have been leveraged in solving a wide variety of important and challenging combinatorial search prob- lems, including automatic test generation, logic synthesis, model checking, program synthesis, and software verification. Though in principle SAT and SMT solvers sim- plify the task of developing practical solutions to these hard combinatorial search problems, in practice developing an application that effectively uses a SAT or SMT solver can be a daunting task. SAT and SMT solvers have limited support, if any, for queries described using the wide array of features developers rely on for describing their programs: procedure calls, loops, recursion, user-defined data types, recursively defined data types, and other mechanisms for abstraction, encapsulation, and modu- larity.
    [Show full text]
  • Haskell the Essence of Functional Programming
    Haskell The essence of functional programming Correspondence to mathematics: • Types play the role of sets • Sets of functions, Sums, Products important • Programs inhabit types, so are like elements of sets • Programs usually have function type, i.e. are functions from input to output • But are really ‘partial’, i.e. can crash, or fail to return an output • But functions remain pure — they map inputs to outputs, so their result does not depend on the state of memory, external events, etc. If you wish to include such dependencies, they must explicitly be inputs to the function Functional programming in practice • Types model objects in the problem domain. • Programming means defining types and writing functions over types. • Computing with functions means evaluation (reduction). • Variables name values and cannot vary. Haskell • Functional programming language • Launched in 1990 • By Paul Hudak, Philip Wadler, Arvind, Brain Boutel, Jon Fairbairn, Joseph Fasel, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, Jonathan Young • Named after logician Haskell Curry (1990-1982) • Photo c/o Wikipedia Haskell is Functional • Functions are first-class, that is, functions are values which can be used in exactly the same ways as any other sort of value. • The meaning of Haskell programs is centered around evaluating expressions rather than executing instructions. Haskell is Pure Haskell expressions are always referentially transparent: • no mutations; everything (variables, data structures …) is immutable • expressions are side-effect free • programs are deterministic - calling the same function with the same arguments results in the same output Haskell is Lazy Expressions are not evaluated until their results are needed.
    [Show full text]
  • Notes on Functional Programming with Haskell
    Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P.
    [Show full text]
  • The Haskell School of Expression: Learning Functional Programming Through Multimedia
    The Haskell School of Expression: Learning Functional Programming through Multimedia The Haskell School of Expression: Learning Functional Programming through Multimedia - 2000 - Cambridge University Press, 2000 - 1107268656, 9781107268654 - Paul Hudak Functional programming is a style of programming that emphasizes the use of functions (in contrast to object-oriented programming, which emphasizes the use of objects). It has become popular in recent years because of its simplicity, conciseness, and clarity. This book teaches functional programming as a way of thinking and problem solving, using Haskell, the most popular purely functional language. Rather than using the conventional (boring) mathematical examples commonly found in other programming language textbooks, the author uses examples drawn from multimedia applications, including graphics, animation, and computer music, thus rewarding the reader with working programs for inherently more interesting applications. Aimed at both beginning and advanced programmers, this tutorial begins with a gentle introduction to functional programming and moves rapidly on to more advanced topics. Details about progamming in Haskell are presented in boxes throughout the text so they can be easily found and referred to. DOWNLOAD FILE HERE: http://resourceid.org/2fjqbSK.pdf Practical Aspects of Declarative Languages - Paul Hudak, David S. Warren - 10th International Symposium, PADL 2008, San Francisco, CA, USA, January 7-8, 2008, Proceedings - This book, complete with online files and updates, covers a hugely important area of study in computing. It constitutes the refereed proceedings of the 10th International - ISBN:9783540774419 - Computers - Dec 18, 2007 - 342 pages DOWNLOAD FILE HERE: http://resourceid.org/2fjj64I.pdf Advanced Functional Programming - First International Spring School on Advanced Functional Programming Techniques, Bastad, Sweden, May 24 - 30, 1995.
    [Show full text]
  • Whither Semantics?
    Whither Semantics? Samson Abramsky∗ Department of Computer Science, University of Oxford Abstract We discuss how mathematical semantics has evolved, and suggest some new directions for future work. As an example, we discuss some recent work on encapsulating model comparison games as comonads, in the context of finite model theory. Keywords Mathematical semantics, finite model theory, model-theoretic games, category theory, comonads 1 Introduction Maurice Nivat was one of the founding fathers of Theoretical Computer Science in Europe, both through his scientific achievements, and his community-building work, including es- tablishing the Journal of Theoretical Computer Science, and as one of the founders of the European Association for Theoretical Computer Science, and the ICALP conference. The very name of ICALP – International Colloquium on Automata, Languages and Programming – shows the two main scientific lines to which Nivat himself made pioneering contributions: formal languages and automata on the one hand, and semantics of programming languages on the other. Having started his scientific career in the former, Nivat had the breadth of interest and perspective to see the importance and depth of the work on mathematical se- arXiv:2010.13328v1 [cs.LO] 23 Oct 2020 mantics of programming languages of Dana Scott, Robin Milner, Rod Burstall, et al. He founded a French school of algebraic semantics of recursive program schemes, and did much to create the conditions and possibilities which allowed for the development by others of work in λ-calculus, type theory, and programming language semantics. In my own entry to the programming languages world, I encountered Nivat’s work, includ- ing [Niv79], which gives an elegant introduction to how infinite objects arise in the semantics of computation, and the mathematical theory around them.
    [Show full text]
  • Modeling User Interfaces in a Functional Language
    Abstract Modeling User Interfaces in a Functional Language Antony Alexander Courtney 2004 It is widely recognized that programs with Graphical User Interfaces (GUIs) are difficult to design and implement. One possible reason for this difficulty is the lack of any clear formal basis for GUI programming. GUI toolkit libraries are typically described only informally, in terms of implementation artifacts such as objects, imperative state and I/O systems. In this thesis, we develop Fruit, a Functional Reactive User Interface Toolkit. Fruit is based on Yampa, an adaptation of Functional Reactive Programming (FRP) to the Arrows computational framework. Yampa has a clear, simple formal se- mantics based on a synchronous dataflow model of computation. GUIs in Fruit are defined compositionally using only the Yampa model and formally tractable mouse, keyboard and picture types. Fruit and Yampa have been implemented as libraries for Haskell, a purely functional programming language. This thesis presents the semantics and implementations of Yampa and Fruit, and shows how they can be used to write concise executable specifications of com- mon GUI programming idioms and complete GUI programs. Modeling User Interfaces in a Functional Language A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Antony Alexander Courtney Dissertation Director: Professor Paul Hudak May 2004 Copyright c 2004 by Antony Alexander Courtney All rights reserved. ii Contents Acknowledgments ix 1 Introduction 1 1.1 Background and Motivation . ...................... 1 1.2 Dissertation Overview . ...................... 4 I Foundations 5 2 Yampa: A Synchronous Dataflow Language Embedded in Haskell 6 2.1 Concepts .
    [Show full text]
  • Submission Data for 2020-2021 CORE Conference Ranking Process International Conference on Functional Programming
    Submission Data for 2020-2021 CORE conference Ranking process International Conference on Functional Programming Jeremy Gibbons Conference Details Conference Title: International Conference on Functional Programming Acronym : ICFP Rank: A* Requested Rank Rank: A* Recent Years Proceedings Publishing Style Proceedings Publishing: journal Link to most recent proceedings: https://dblp.uni-trier.de/db/journals/pacmpl/pacmpl4.html#nrICFP Further details: ACM introduced the PACM series of journals in 2017 for ”the best conferences published by ACM”, for publishing the proceedings of conferences with a two-phase reviewing process comparable to journal reviewing ( https://www.acm.org/publications/pacm/introducing-pacm). In particular, Proceedings of the ACM on Programming Languages (PACMPL) has published the proceedings of ICFP, OOPSLA, and POPL since September 2017 ( https://dl.acm.org/journal/pacmpl). It is published Gold Open Access. Most Recent Years Most Recent Year Year: 2019 URL: https://icfp19.sigplan.org/ Location: Berlin Papers submitted: 119 Papers published: 39 Acceptance rate: 33 Source for numbers: SlidesfromPCChair'sreport General Chairs Name: Derek Dreyer Affiliation: MPS-SWS Gender: M H Index: 33 GScholar url: https://scholar.google.com/citations?user=1_c89uMAAAAJ&hl=en DBLP url: Program Chairs Name: Francois Pottier Affiliation: INRIA Gender: M H Index: 30 GScholar url: https://scholar.google.com/citations?user=7R6jcZ0AAAAJ&hl=en DBLP url: 1 Second Most Recent Year Year: 2018 URL: https://icfp18.sigplan.org/ Location: St Louis, Missouri
    [Show full text]
  • Variations on Algebra: Monadicity and Generalisations of Equational Theories Robinson, Edmund P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Variations on Algebra: monadicity and generalisations of equational theories Robinson, Edmund P. For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/4745 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Department of Computer Science Research Report No. RR-02-01 ISSN 1470-5559 February 2002 Variations on Algebra: monadicity and generalisations of equational theories Edmund Robinson Variations on Algebra: monadicity and generalisations of equational theories Edmund Robinson ∗ Queen Mary, University of London February 12, 2002 Dedicated to Rod Burstall Introduction Rod Burstall gave me my first academic job. This was, he explained, to help his group learn about some of the more advanced aspects of category theory. In fact I spent much of my time learning from them about some of the more advanced, now fundamental, aspects of Computer Science. I’ve always been grateful to Rod, both for the opportunity, and for his willingness to give me time to learn. So it’s appropriate that I offer this essentially tutorial paper to him. Better late than never! Back in the dawn of time Linton [Lin66] discovered that there was a connection between one- sorted algebraic theories and the categorical notion of monad, or more precisely, monads with rank on the category of sets. From the categorist’s point of view this is important because it gives a good ranking of the definitional power of the notion of monad, placing monads at the bottom end of a hierarchy of theories with generic models, with geometric theories and their classifying toposes at the top.
    [Show full text]