Aerospace Engineering — 53

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace Engineering — 53 Aerospace Engineering — 53 There is instrumentation for Schlieren photography, Aerospace pressure, temperature, and turbulence measurements. A large subsonic wind tunnel, capable of speeds of up to Engineering 300 miles per hour, has a test section 4 feet wide by 2.7 feet high by 11 feet long and is complemented by a six- Bachelor of Science component balance system. Other facilities include Master of Science flight simulation laboratory, space systems engineering Doctor of Philosophy laboratory, aerospace structural test equipment, propulsion component analysis systems, and shock The Aerospace Engineering program is offered in tubes. the Department of Mechanical and Aerospace Engineering. In aerospace engineering, you will apply Mission Statement the laws of physics and mathematics to problems of To build and enhance the excellent public program aircraft flight and space vehicles in planetary that the Department of Mechanical and Aerospace atmospheres and adjoining regions of space. Maybe you Engineering currently is, and to be recognized as such; will design space shuttles, rockets, or missiles. Possibly to provide our students with experiences in solving you might design military, transport, and general open-ended problems of industrial and societal need aviation aircraft, or a V/STOL (vertical/short take-off through learned skills in integrating engineering and landing) aircraft. You could design a spacecraft to sciences, and synthesizing and developing useful travel to Mars or a more distant planet. products and processes; to provide experiences in You’ll be able to tackle problems in the leadership, teamwork, communications-oral, written environmental pollution of air and water and in the and graphic-, and hands-on activities, with the help of natural wind effects on buildings and structures. structured and unstructured real-life projects. Designing all types of transportation systems, including high speed vehicles, urban rapid transit systems, and Missouri S&T Aerospace Engineering undersea craft, might be some of the challenges you will Program Objectives undertake. Your professional training in aerospace engineering The overall educational objective of the Aerospace will be directed generally toward the analysis and design Engineering program is to prepare graduates for careers of aerospace vehicles, including aircraft, missiles, and in the aerospace engineering profession and related spacecraft with special emphasis on the fundamental disciplines, and/or receive an advanced graduate treatment of aerospace science. You will accomplish degree within three to five years from their graduation. your goals through your basic training in gas dynamics, Specifically, the expected professional accomplishments stability control dynamics, structures, propulsion, and of the program graduates within five years from their aerodynamics including cross-lineage between these graduation are that: areas. You will use this knowledge to design, build, and • They are employed by industry, a government flight test aerospace systems during the sophomore and agency, or in academia, or are in private practice. senior years. • They have demonstrated competence and are Your studies at Missouri S&T will include both basic successfully contributing to the aerospace science, science and engineering science, mathematics, and technology, or engineering workforce. liberal arts courses as well as advanced aerospace engineering courses. Within aerospace engineering, you And, they have found that their education at can choose nine hours of technical electives in a special Missouri S&T was valuable preparation for their careers. interest area such as aerodynamics, dynamics structures, composites, flight dynamics, controls, Aerospace Program Outcomes: propulsion, and aeroelasticity. Your design courses will be integrated with Missouri Students graduating from the Missouri S&T Aerospace S&T’s computer graphics system to unify the graphical Engineering Program should have: capabilities of the computer into your design (a) an ability to apply knowledge of mathematics, experience. The Mechanical and Aerospace Engineering science, and engineering Department also has a departmental honors program. (b) an ability to design and conduct experiments, as This program provides enhanced educational well as to analyze and interpret data opportunities for you if you qualify. Upon satisfactory (c) an ability to design a system, component, or completion of the program, the designation of “Honors process to meet desired needs within realistic Scholar in Engineering” will appear on your diploma and constraints such as economic, environmental, transcript. Undergraduate departmental research social, political, ethical, health and safety, opportunities are also available through the NASA Space manufacturability, and sustainability Grant Consortium and the OURE program. (d) an ability to function on multidisciplinary teams Classes and laboratories are held in Toomey Hall. (e) an ability to identify, formulate, and solve There is a Mach 1.5 to 4 supersonic blow down wind engineering problems tunnel with a five-inch diameter jet which has (f) an understanding of professional and ethical continuous run-time duration’s of up to five minutes. responsibility 54 — Aerospace Engineering (g) an ability to communicate effectively must be attained. At least two grade points per credit (h) the broad education necessary to understand the hour must also be attained in all courses taken in impact of engineering solutions in a global, Aerospace Engineering. economic, environmental, and societal context Each student's program of study must contain a (i) a recognition of the need for, and an ability to minimum of 21 credit hours of course work in general engage in life-long learning education and must be chosen according to the (j) a knowledge of contemporary issues following rules: (k) an ability to use the techniques, skills, and modern 1) All students are required to take one American engineering tools necessary for engineering history course, one economics course, one humanities practice. course, and English 20. The history course is to be selected from History 112, History 175, History 176, or Political Science 90. The economics course may be Faculty either Economics 121 or 122. The humanities course Professors: must be selected from the approved lists for Art, S.N. Balakrishnan, Ph.D., University of Texas,at Austin English, Foreign Languages, Music, Philosophy, Speech K. Chandrashekhara (Curators’), Ph.D., Virginia and Media Studies, or Theater. Polytechnic Institute and State University 2) Depth requirement. Three credit hours must be L. R. Dharani (Curators’), Ph.D., Clemson taken in humanities or social sciences at the 100 level Walter Eversman1 (Curators’), Ph.D., Stanford or above and must be selected from the approved list. Fathi Finaish (Associate Chair), Ph.D., University of Colorado This course must have as a prerequisite one of the K.M.Isaac, Ph.D., Virginia Polytechnic Institute and humanities or social sciences courses already taken. State University Foreign language courses numbered 70 or 80 will be David W. Riggins, Ph.D., Virginia Polytechnic Institute considered to satisfy this requirement. Students may and State University receive humanities credit for foreign language courses Associate Professors: in their native tongue only if the course is at the 300 Gearoid MacSithigh, Ph.D., Minnesota level. All courses taken to satisfy the depth requirement Henry J. Pernicka, Ph.D., Purdue must be taken after graduating from high school. Assistant Professors: 3) The remaining two courses are to be chosen Serhat Hosder, Ph.D., Virginia Polytechnic Institute and from the list of approved humanities/social sciences State University courses and may include one communications course in Josh Rovey, Ph.D., University of Michigan addition to English 20. Emeritus Professors: 4) Any specific departmental requirements in the Donald Cronin (Emeritus), Ph.D., California Institute of general studies area must be satisfied. Technology 5) Special topics and special problems and honors Leslie R. Koval (Emeritus), Ph.D., Cornell seminars are allowed only by petition to and approval by Shen Ching Lee1 (Emeritus), Ph.D., Washington the student's department chairman. Terry Lehnhoff1 (Emeritus), Ph.D., Illinois The Aerospace Engineering program at Missouri Robert Oetting1 (Emeritus), Ph.D., Maryland S&T is characterized by its focus on the scientific basics Bruce Selberg (Emeritus), Aerospace Engineer, University of engineering and its innovative application; indeed, of Michigan the underlying theme of this educational program is the application of the scientific basics to engineering 1Registered Professional Engineer practice through attention to problems and needs of the public. The necessary interrelations among the various Bachelor of Science topics, the engineering disciplines, and the other professions as they naturally come together in the Aerospace Engineering solution of real world problems are emphasized as Entering freshmen desiring to study Aerospace research, analysis, synthesis, and design are presented Engineering will be admitted to the Freshman and discussed through classroom and laboratory Engineering Program. They will, however, be permitted, instruction. if they wish, to state a Aerospace Engineering preference, which will be used as a consideration for FREE ELECTIVES FOOTNOTE: available freshman departmental scholarships. The Free electives. Each student is required to take six
Recommended publications
  • 2020 Aerospace Engineering Major
    Major Map: Aerospace Engineering Bachelor of Science in Engineering (B.S.E.) College of Engineering and Computing Department of Mechanical Engineering Bulletin Year: 2020-2021 This course plan is a recommended sequence for this major. Courses designated as critical (!) may have a deadline for completion and/or affect time to graduation. Please see the Program Notes section for details regarding “critical courses” for this particular Program of Study. Credit Min. Major ! Course Subject and Title Hours Grade1 GPA2 Code Prerequisites Notes Semester One (17 Credit Hours) ENGL 101 Critical Reading and Composition 3 C CC-CMW ! MATH 141 Calculus 13 4 C CC-ARP C or better in MATH 112/115/116 or Math placement test score CHEM 111 & CHEM 111L – General Chemistry I 4 C CC-SCI C or better in MATH 111/115/122/141 or higher math or Math placement test AESP 101 Intro. to Aerospace Engineering 3 * PR Carolina Core AIU4 3 CC-AIU Semester Two (18 Credit Hours) ENGL 102 Rhetoric and Composition 3 CC-CMW C or better in ENGL 101 CC-INF ! MATH 142 Calculus II 4 C CC-ARP C or better in MATH 141 CHEM 112 & CHEM 112L – General Chemistry II 4 PR C or better in CHEM 111, MATH 111/115/122/141 or higher math ! PHYS 211 & PHYS 211L – Essentials of Physics I 4 C CC-SCI C or better in MATH 141 EMCH 111 Intro. to Computer-Aided Design 3 * PR Semester Three (15 Credit Hours) ! EMCH 200 Statics 3 C * PR C or better in MATH 141 ! EMCH 201 Intro.
    [Show full text]
  • Innovation Through Design Thinking (2 Units)
    University Of California, Berkeley Department of Mechanical Engineering ME 290K A: Innovation through Design Thinking (2 units) Graduate Course Syllabus CATALOG DESCRIPTION Designed for professionally-oriented graduate students, this course explores key concepts in design inovation based on the human-centered design approach called “design thinking”. Topics cover include human-centered design research, analysis of research to develop design principles, creativity techniques, user needs framing and strategic business modeling. COURSE PREREQUISITES Graduate level standing; Prior design course TEXTBOOK(S) AND/OR OTHER REQUIRED MATERIAL No formal textbook. Sample readings are: Designing for Growth: A Design Thinking Tool Kit for Managers, by Jeanne Liedtka and Tim Ogilvie, Columbia Business School, 2011. Peter Guber Interview – The MAGIC is Story at http://tinyurl.com/3phk6bl and the executive summary of the book Made to Stick at Design Thinkng .tagonline.org/files/Made_to_Stick.pdf. “Design Thinking: Notes on its Nature and Use,” Design Research Quarterly Vol. 2, N0. 1, January, 2007 “The Principles of Collective Invention,” White Paper by Erika Gregory & Clark Kellogg “Learning from Studio,” by Clark Kellogg, Design Intelligence Knowledge Reports, January, 2006 The Future of Innovation, by Andrew Razeghi, selected chapters (Slimbooks), 2012 “PFPS Toolkit,” by Clark Kellogg, Sara Beckman and Helene Cahen “Culture of the Charrette,” White Paper by Arnold Wasserman “Ethnography Primer,” IDSA, 2010 Business Model Generation: A Handbook
    [Show full text]
  • The Effects of Creative Problem Solving Training on Cognitive Processes in Managerial Problem Solving”
    “The Effects of Creative Problem Solving Training on Cognitive Processes in Managerial Problem Solving” Ching-Wen Wang AUTHORS Ruey-Yun Horng Shih-Chang Hung Yung-Chang Huang Ching-Wen Wang, Ruey-Yun Horng, Shih-Chang Hung and Yung-Chang Huang ARTICLE INFO (2004). The Effects of Creative Problem Solving Training on Cognitive Processes in Managerial Problem Solving. Problems and Perspectives in Management, 2(1) RELEASED ON Wednesday, 17 March 2004 JOURNAL "Problems and Perspectives in Management" FOUNDER LLC “Consulting Publishing Company “Business Perspectives” NUMBER OF REFERENCES NUMBER OF FIGURES NUMBER OF TABLES 0 0 0 © The author(s) 2021. This publication is an open access article. businessperspectives.org Problems and Perspectives in Management, 1/2004 101 The Effects of Creative Problem Solving Training on Cognitive Processes in Managerial Problem Solving Ching-Wen Wang1, Ruey-Yun Horng2, Shih-Chang Hung3, Yung-Chang Huang2 Abstract: The purpose of this study is to investigate the effect of Creative Problem Solv- ing (CPS) training on managerial problem solving behaviors. The ill-defined nature of managerial problem solving process is modeled by a two-space four-stage search model. Twenty-two mangers solved a managerial case before they received 12 hours of CPS training (control group). Another 22 managers solved the case problem after the CPS training (experimental group). All managers were administered the Torrance Test of Creative Thinking, Circle Test before the CPS training. The results showed that after the CPS, managers in the experimental group improved in the num- ber of inferences made in the problem space and the number ofroblem p definitions linking the cognitive activities between problem space and solution space,compared to managers in the con- trol group.
    [Show full text]
  • Systems Engineering Essentials (In Aerospace)
    Systems Engineering Essentials (in Aerospace) March 2, 1998 Matt Sexstone Aerospace Engineer NASA Langley Research Center currently a graduate student at the University of Virginia NASA Intercenter Systems Analysis Team Executive Summary • “Boeing wants Systems Engineers . .” • Systems Engineering (SE) is not new and integrates all of the issues in engineering • SE involves a life-cycle balanced perspective to engineering design and problem solving • An SE approach is especially useful when there is no single “correct” answer • ALL successful project team leaders and management employ SE concepts NASA Intercenter Systems Analysis Team Overview • My background • Review: definition of a system • Systems Engineering – What is it? – What isn’t it? – Why implement it? • Ten essentials in Systems Engineering • Boeing wants Systems Engineers. WHY? • Summary and Conclusions NASA Intercenter Systems Analysis Team My Background • BS Aerospace Engineering, Virginia Tech, 1990 • ME Mechanical & Aerospace Engineering, Manufacturing Systems Engineering, University of Virginia, 1997 • NASA B737 High-Lift Flight Experiment • NASA Intercenter Systems Analysis Team – Conceptual Design and Mission Analysis – Technology and Systems Analysis • I am not the “Swami” of Systems Engineering NASA Intercenter Systems Analysis Team Review: Definition of System • “A set of elements so interconnected as to aid in driving toward a defined goal.” (Gibson) • Generalized elements: – Environment – Sub-systems with related functions or processes – Inputs and outputs • Large-scale systems – Typically include a policy component (“beyond Pareto”) – Are high order (large number of sub-systems) – Usually complex and possibly unique NASA Intercenter Systems Analysis Team Systems Engineering is . • An interdisciplinary collaborative approach to derive, evolve, and verify a life-cycle balanced system solution that satisfies customer expectations and meets public acceptability (IEEE-STD-1220, 1994) • the absence of stupidity • i.e.
    [Show full text]
  • Teaching Creativity in a Technological Design Context*
    Int. J. Engng Ed. Vol. 19, No. 2, pp. 260±271, 2002 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2002 TEMPUS Publications. Teaching Creativity in a Technological Design Context* KEES VAN OVERVELD, RENEÂ AHN, ISABELLE REYMEN and MAXIM IVASHKOV Stan Ackermans Institute, Centre for Technological Design, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: [email protected] We want to teach creativity techniques to prospective technological designers in a domain- independent way. To facilitate this, we adopt a format and nomenclature that is close to the terminology used by engineers. Central notions are concepts, attributes and values. A crucial role is played by, what we call, productive attributes: attributes that come with a set of values that can easily be enumerated. In this paper we show how this format supports several creativity techniques and how it allows engineers to explore option spaces in a structured manner. We briefly discuss some practical experiences with our approach. INTRODUCTION: PROBLEM STATEMENT ANALYSIS THE STAN ACKERMANS INSTITUTE (SAI) We focus on the following problem: `How to is a subsidiary of Eindhoven University of Tech- teach creativity techniques in interdisciplinary nology [1]. It has been established in order to design for post graduate technological design organise various postgraduate programs in programs'. advanced technological design. In order to enrol Even when dealing with design problems that in these programs, candidates possess a completed offer ample opportunity for an innovative masters degree in some technical discipline; after approach, novice designers and students in tech- successful completion of an SAI program, they nological design very often fall back to conven- receive the title MTD (Master of Technological tional, and frequently sub-optimal textbook-type Design): a degree that is certified by the Dutch solutions.
    [Show full text]
  • The Origins of Aerospace Engineering Degree Courses
    Contributed paper Introduction Theorigins of the aerospaceindustry go back The origins of manycenturies. Everyone is familiar with the aerospace engineering storyof Icaruswho having designed a pairof wings,attempted to ¯y.Hewas successfulbut degree courses ¯ewtooclose to the sun,whereupon the adhesiveused as wingfastening melted due to E.C.P. Ransom and thermalradiation and his ¯ ightended in A.W. Self disaster.At the timethis wouldhave been regardedas science® ction,but clearly there was someawareness of aerodynamics(for wingdesign), adhesives and thermal radiation. The authors Inretrospect, it isapparent that before E.C.P. Ransom and A.W. Self are at Kingston University, successfulman carrying powered ¯ ightcould London, UK bedemonstrated, there had been a periodof intensestudy including experimental and Keywords theoreticalanalysis. The Royal Aeronautical Society,formed in 1866, precededthe ®rst Higher education, Aerospace engineering ¯ightby some37 years.As alearnedsociety it encouragedthe discoveryand exchange of Abstract knowledgenecessary for successful heavier The development of degree courses specically designed than air¯ ight. for aerospace engineers is described in relation to the Orvilleand Wilbur Wright, contrary to change in needs of the industry since the demonstration of popularunderstanding, were extremely powered ight. The impact of two world wars and political talentedresearch workers as wellas decisions on the way universities have been able to meet competentdesigners. T oimprovetheir the demand for graduates is discussed.
    [Show full text]
  • Brainstorming and Brainwriting As Creativity Techniques: a Diagnosis in Companies of the Metallurgic Sector
    Brainstorming and Brainwriting as creativity techniques: a diagnosis in companies of the metallurgic sector Jaqueline Fonseca Rodrigues (UTFPR) [email protected] Ivanilde Scussiatto Eyng (UNAM-Argentina) [email protected] Thompson von Agner (CESCAGE) [email protected] Isaura Alberton de Lima (UTFPR) [email protected] Dálcio Roberto dos Reis (UTFPR) dá[email protected] Abstract The objective of this article is to diagnosis the level of knowledge and the level of experience allied to the importance of the creativity, through the use of the techniques of Brainstorming and Brainwriting, as stimulation to the generation of ideas. The present study was developed in companies of the metallurgic sector in the City of Ponta Grossa. Here presented through a field research in eleven companies. Creativity for some authors is the process to become sensible the problems, deficiencies; gaps in knowledge, disharmony; to identify the difficulty, to search solutions, formulating hypotheses regarding the deficiencies; to test and to re-test these hypotheses; and finally, to communicate the results. Brainstorming, more than a technique of group dynamics, is a developed activity to explore the potentiality creativity of individual, placing them it service of their objectives, whereas Brainwriting is the quiet version of the Brainstorming. The results demonstrate that in relation to the knowledge level: Brainstorming: there are managers who do not know, others that know and still a third group that knows well; Brainwriting: many managers are unaware of, some know and few know well. With regard to the experience level: Brainstorming: a great number of managers does not use, few use occasionally and some use it regularly; Brainwriting: a totality of the researched managers practically do not use, a minority uses occasionally and none of the managers makes regular use of the technique.
    [Show full text]
  • Fostering Creativity and Innovation 203 This Work May Not Be Reproduced Or Distributed in Any Form Or by Any Means Without Express Written Permission of the Publisher
    Fostering Creativity and DO Innovation 7NOT Creativity at J.Crew On the inside cover of a spring 2013 mail catalog, Jenna LEARNING Lyons, Creative Director of J.Crew wrote “You may remember OUTCOMESCOPY, us from years ago—J.Crew, all about the classics. You’ll still find them here, but we’ve changed a lot since then. These After reading this chapter, you should be days, you might be surprised by what you find.” able to: In that short statement, Lyons summarizes a much more com- 1. Interpret the steps in the creative process plex series of developments that have occurred at J.Crew POST,over the last 10 years. Not only has the company tripled its 2. Distinguish between creativity and annual revenue, but it has become an almost cult-like brand. innovation and understand how they Much of the credit for the change goes to Mickey Drexler work together who became chairman and CEO at J.Crew in 2003. Under 3. Recognize and resolve impediments Drexler and Lyons (as Creative Director), the J.Crew product to creativity and innovation in design would be no longer dictated by corporate strategy. In organizations fact, this approach ORwould be turned on its head: the focus 4. Employ various tools and approaches would be on the creative process and building a unified aes- to enhancing creativity thetic for the brand. Early in his tenure, Drexler appointed Lyons not only Creative Director, but also president of the 5. Explain the role of leadership in company. “What it says,” LyonsDISTRIBUTE argues, “is that no financial enhancing organizational creativity and innovation decision weighs heavier than a creative decision.
    [Show full text]
  • Problem Discovery As a Collaborative, Creative, and Method-Guided Search for The
    No. 14-0003 Problem Discovery as a Collaborative, Creative, and Method- Guided Search for the “Real Problems” as Raw Diamonds of Innovation by Gerald Steiner, Visiting Scholar, Program on Transatlantic Relations Associate Professor, Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz Working Paper Series 1737 CAMBRIDGE STREET • CAMBRIDGE, MA 02138 • TEL 617.495.4420 • FAX 617.495.8292 [email protected] • http://www.wcfia.harvard.edu Problem Discovery as a Collaborative, Creative, and Method-Guided Search for the “Real Problems” as Raw Diamonds of Innovation Gerald Steiner Visiting Scholar, Program on Transatlantic Relations, Weatherhead Center for International Affairs, Harvard University Associate Professor for Systemic and Sustainability Management, Institute of Systems Sciences, Innovation, and Sustainability Research, University of Graz, Austria Acknowledgements: This work was conducted as part of Visiting Scholarship at the Weatherhead Center for International Affairs (WCFIA) at Harvard University. I would like to thank my colleagues from the WCFIA for their generous support and for helpful discussions and comments on various aspects of this research. Abstract This paper poses that the creative search for frequently hidden “real” problems is critical if innovation aims at comprehensive system improvements and changes in thinking paradigms, rather than simple, incremental changes. These hidden real problems can perhaps best be symbolized by raw diamonds, which one strives to find in order to then grind them into sparkling diamonds, i.e. innovation. Currently, problem solving-related research focuses on the analysis and solution of predefined problems, with little emphasis on problem reframing and systemic discovery; moreover, inter- and transdisciplinary collaborations for problem finding and the application of convoluted methods receive little attention.
    [Show full text]
  • Using Creativity Techniques in the Product-Innovation Process
    61-03-83 USING CREATIVITY TECHNIQUES IN THE PRODUCT-INNOVATION PROCESS Horst Geschka uring the process of product innovation, numerous problems that require creative solutions are encountered. These problems include D recognizing of customer needs, generating ideas for new products or product applications, developing new product concepts, finding solutions for technical problems, adjusting the production process, and developing a marketing concept for the market launch. A number of solutions may be developed for each of these problems. Through screening and evaluation, the best solutions serve as a point of departure for the next step in the product-innovation process (see Exhibit 1). Solutions can be found by means of technical know-how and experience. However, solutions can also be developed systematically by applying creativity techniques. New product ideas often result from the efforts of a few highly creative individuals whose brilliant ideas are turned into new products. Although this method of developing new product ideas is often successful, an organization cannot merely depend on a few highly creative individuals. The reasons for this are: Only a limited number of people within an organization can be labelled “highly creative.” Experience shows that within certain professions less than 10% of the people can be indicated as highly creative. This means that when these people are the only ones that an organization can depend on, the production of useful ideas is rather limited. New products are now being developed systematically. Because the process of product development has a fixed sequence, creative input is required at certain fixed moments in the process. Therefore, a company must be able HORST GESCHKA is the founder of Geschka & Partner Management Consultants and professor at the Technical University of Darmstadt, Germany.
    [Show full text]
  • Authenticity, Interdisciplinarity, and Mentoring for STEM Learning Environments
    International Journal of Education in Mathematics, Science and Technology Volume 4, Number 1, 2016 DOI:10.18404/ijemst.78411 Lessons Learned: Authenticity, Interdisciplinarity, and Mentoring for STEM Learning Environments Mehmet C. Ayar, Bugrahan Yalvac Article Info Abstract Article History In this paper, we discuss the individuals’ roles, responsibilities, and routine activities, along with their goals and intentions in two different contexts—a Received: school science context and a university research context—using sociological 11 July 2015 lenses. We highlight the distinct characteristics of both contexts to suggest new design strategies for STEM learning environments in school science context. We Accepted: collected our research data through participant observations, field notes, group 11 October 2015 conversations, and interviews. Our findings indicate that school science practices were limited to memorizing and replicating science content knowledge through Keywords lectures and laboratory activities. Simple-structured science activities were a STEM education means to engage school science students in practical work and relate the STEM learning theoretical concepts to such work. Their routine activities were to succeed in Learning environment schooling objectives. In university research settings, the routine activities had School science interdisciplinary dimensions representing cognitive, social, and material Science communities dimensions of scientific practice. Such routine activities were missing in the practices of school science. We found that the differences between school and university research settings were primarily associated with individuals’ goals and intentions, which resulted in different social structures. In school settings, more authentic social structure can evolve if teachers trust their students and allow them to share the social and epistemic authorities through establishing mentorship.
    [Show full text]
  • Creativity in Business 2014.Pdf
    CreativityCreativity InIn BusinessBusiness Guest Editor Fredricka K. Reisman, PhD President, American Creativity Association KIE Conference Book Series INTERNATIONAL CONFERENCE ON Knowledge, Innovation and Enterprise 11 —15 A UGUST 2015 ISTANBUL , T URKEY Papers are solicited in most topics or fields within the following and related themes: Themes: Knowledge Including knowledge management, comparative knowledge, indigenous knowledge, Knowledge & Education, Knowledge Transfer Partnerships, Knowledge Utilisation, Pat- ents & Copyrights and Business & Information Systems Innovation Including Science Innovation, Technology Innovation including Big Data Analytics and Management/Organisation and Open Innovation Creativity Including Concepts—process, product, personality and environment, Business/ Organisational Creativity, Arts, Media & Digital Creativity, Creative Industries & Enter- prise, Digital Design & Architectures, Craft & Animation Enterprise including entrepreneurship, Marketing & Strategy, HR, Talent & Development, Servant/ Leadership in Enterprise, SME Business Finance & Accounting, Supply Chain Manage- ment, International Business & Management & Ethnic Minority Entrepreneurship Papers will be published in the KIE Conference Book Series and selected papers will be published in the associated journal of the conference—see www.jkie.org For details of registration including deadlines, please visit: www.kiecon.org Creativity in Business Guest Editor Fredricka K. Reisman, PhD CREATIVITY IN BUSINESS © All rights reserved. You are welcome
    [Show full text]