In Vitro and in Vivo Assessments

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro and in Vivo Assessments International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Lipoparticles for Synergistic Chemo-Photodynamic Therapy to Ovarian Carcinoma Cells: In vitro and in vivo Assessments This article was published in the following Dove Press journal: International Journal of Nanomedicine Sajid Ali1 Purpose: Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising Muhammad Umair Amin1,2 polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), Imran Tariq1,3 thereby melding the biomimetic properties of long-circulating vesicles as well as the Muhammad Farhan Sohail4,5 mechanical advantages of the nanoparticles. The present study was aimed at the development Muhammad Yasir Ali1,6 of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers. Eduard Preis1 Methods: For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic Ghazala Ambreen1 1 acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas Shashank Reddy Pinnapireddy liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. 1 Jarmila Jedelská Physicochemical and morphological characterizations were done using dynamic light scattering, 1 Jens Schäfer laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The 1 Udo Bakowsky quantitative assessment of cell damage was determined using MTT and reactive oxygen species 1Department of Pharmaceutics and (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability Biopharmaceutics, University of Marburg, testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice. 2 Marburg, Germany; Faculty of Pharmacy, Results and Conclusion: The mean hydrodynamic diameter of the formulations was The University of Lahore, Lahore, Pakistan; 3Punjab University College of Pharmacy, found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging University of the Punjab, Allama Iqbal from −12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the Campus, Lahore, Pakistan; 4Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated International University, Lahore, Pakistan; nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in 5 Department of Pharmacy, Faculty of Health LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity and Medical Science, University of Copenhagen, Copenhagen, Denmark; was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo 6Faculty of Pharmaceutical Sciences, GC toxicity as compared to the free drugs and was evident from the serum biochemical University Faisalabad, Faisalabad, Pakistan profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system. Keywords: atomic force microscopy, FACS, in vivo, in vitro cytotoxicity, lipid-polymer hybrid nanoparticles, photodynamic therapy, PLGA nanoparticles, TEM Introduction The combination therapy is referred to as the simultaneous administration of two or Correspondence: Udo Bakowsky Department of Pharmaceutics and more pharmacologically active moieties which can alter the different signaling Biopharmaceutics, University of Marburg, pathways in the infectious sites.1 The anticancer combination therapy has been Robert Koch Str. 4, Marburg, 35037, Germany proved to be an effective treatment strategy than the delivery of the single drug Tel + 49 6421 28 25884 modality. This therapy can significantly reduce the side effects, increase the treat­ Fax + 49 6421 28 27016 Email [email protected] ment efficacy, and potentially overcome the multidrug resistance, which could be submit your manuscript | www.dovepress.com International Journal of Nanomedicine 2021:16 951–976 951 DovePress © 2021 Ali et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php http://doi.org/10.2147/IJN.S285950 and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Ali et al Dovepress a major limiting factor to the success of anticancer The present study was focused on the development of chemotherapy.2,3 To accomplish an effective enhancement, novel lipid-coated biodegradable nanoparticles (LCNP) con­ both the therapeutic moieties (with the different mechan­ sisting of a nanoparticle core surrounded by a liposomal isms of actions) shall be co-localized in the cancer cells. In membrane (Figure 1). This nanocarrier system was devel­ such therapeutic systems, the increased potency of the oped to provide a synergistic therapy to the cancer cells by anticancer drugs can be observed at the lower effective concurrently delivering two different drugs. THP and dose that corresponds to the reduction in the cancer cell mTHPC loaded formulations were evaluated using dynamic viability or tumor volume as compared to two separate light scattering (DLS) and laser doppler anemometry (LDA) administered treatments.2 The combination of chemother­ for size distribution and surface charge, respectively. apy and photodynamic therapy has emerged as Morphological characterizations were carried out using a promising strategy for the treatment of the cancer. atomic force microscopy (AFM) and transmission electron Pirarubicin ([2″R]-4′-O-tetrahydropyranyl-doxorubicin; microscopy (TEM). Besides, the in vitro cell viability assay THP) is an anthracycline derivative that inhibits type II was conducted using ovarian carcinoma (SK-OV-3) cells topoisomerase and DNA polymerase. It is used for the and IC50 values for the THP loaded PLGA nanoparticles, treatment of a variety of cancers such as head, neck, breast, mTHPC loaded liposomes, as well as lipid-coated nanopar­ and lymphomas. THP is a pyranyl derivative of doxorubicin ticles (LCNPs), were calculated. In vitro hemocompatibility involving the generation of reactive oxygen species (ROS). using activated partial thromboplastin time (aPTT) and ex- Due to the presence of the pyranyl group and its lipophilic vivo hemolysis assay was determined. Stability studies in properties, it exhibits a more potent anticancer activity and simulated physiological conditions were also performed. faster cellular uptake than doxorubicin.4 The limitation of Acute in vivo toxicity assessment including blood biochem­ the THP mediated chemotherapy is the indiscriminate dis­ istry and histopathological examinations were conducted tribution into normal body tissues and organs before its using albino female albino (BALB/c) mice. delivery to the tumor thus causing adverse effects such as bone marrow suppression and cardiac and renal toxicity. All Materials and Methods these adverse effects limit the use of THP in clinical Materials 5 settings. The pharmacokinetic parameters of THP can be Pirarubicin ([2″R]-4′-O-tetrahydropyranyl-doxorubicin; modified by encapsulating it into a nanoparticulate system THP) (98% pure) was purchased from Selleckchem thus reducing the side effects and increasing the efficacy of (Absource diagnostics, München, Deutschland). the system. Nanocarriers composed of PLGA (Poly-D, Temoporfin (5, 10, 15, 20-tetrakis (3-hydroxyphenyl) L-lactide-co-glycolide) have been investigated to carry the chlorin; mTHPC) was procured from Cayman chemicals drugs to their designated site of action. Being biocompatible (Hamburg, Germany). 1,2-dipalmitoyl-sn-glycero-3-phos­ and biodegradable, PLGA nanoparticles are interesting vehi­ phatidylcholine (DPPC); 1,2-dipalmitoyl-sn-glycero-3-phos­ 6 cles for the systemic delivery of THP. phoethanolamine-N-[methoxy(polyethylene glycol)-5000] Temoporfin (Meso-tetrahyroxyphenyl chlorine; mTHPC) (DPPE-mPEG5000) and 2-dipalmitoyl-sn-glycero-3-phos­ is one of the most potent second-generation photosensitizers pho-(1′-rac-glycerol) (sodium salt) (DPPG) were obtained used for the treatment of a variety of clinical disorders. After as gift sample from Lipoid GmbH (Ludwigshafen, being administered, the mTHPC can be preferentially loca­ Germany). PLGA (Resomer® RG 503 H, Poly (D, L-lactide- lized into the tumor tissue by exploiting the tumor′s EPR co-glycolide)) was supplied by Evonik (Essen, Germany). (enhanced permeability and retention) effect. After being Poly (vinyl alcohol) (PVA, Mowiol 4–88) was purchased activated by a specific wavelength (652 nm), it produces from Kuraray (Hattersheim, Germany). Polysorbate 80 free radicals and singlet oxygen species that caused the (Tween 80); 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetra­ destruction of cancer cells.7 However, its hydrophobic nat­ zolium bromide (MTT) and 2′,7′-dichlorodihydrofluorescein ure, poor aqueous solubility, and low
Recommended publications
  • Topotecan, Pegylated Liposomal Doxorubicin Hydrochloride
    Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer (report contains no commercial in confidence data) Produced by Centre for Reviews and Dissemination, University of York Authors Ms Caroline Main, Research Fellow, Systematic Reviews, Centre for Reviews and Dissemination, University of York, YO10 5DD Ms Laura Ginnelly, Research Fellow, Health Economics, Centre for Health Economics, University of York, YO10 5DD Ms Susan Griffin, Research Fellow, Health Economics, Centre for Health Economics, University of York, YO10 5DD Dr Gill Norman, Research Fellow, Systematic Reviews, Centre for Reviews and Dissemination, University of York, YO10 5DD Mr Marco Barbieri, Research Fellow, Health Economics, The Economic and Health Research Centre, Universitat Pompeu Fabra, Barcelona, Spain Ms Lisa Mather, Information Officer, Centre for Reviews and Dissemination, University of York, YO10 5DD Dr Dan Stark, Senior Lecturer in Oncology and Honorary Consultant in Medical Oncology, Department of Oncology, Bradford Royal Infirmary Mr Stephen Palmer, Senior Research Fellow, Health Economics, Centre for Health Economics, University of York, YO10 5DD Dr Rob Riemsma, Reviews Manager, Systematic Reviews, Centre for Reviews and Dissemination, University of York, YO10 5DD Correspondence to Caroline Main, Centre for Reviews and Dissemination, University of York, YO10 5DD, Tel: (01904) 321055, Fax: (01904) 321041, E-mail: [email protected] Date completed September 2004 Expiry date September 2006 Contributions of authors Caroline Main Lead reviewer responsible for writing the protocol, study selection, data extraction, validity assessment and writing the final report. Laura Ginnelly Involved in the cost-effectiveness section, writing the protocol, study selection, data extraction, development of the economic model and report writing.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya Et Al
    US 2006.0024.365A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya et al. (43) Pub. Date: Feb. 2, 2006 (54) NOVEL DOSAGE FORM (30) Foreign Application Priority Data (76) Inventors: Navin Vaya, Gujarat (IN); Rajesh Aug. 5, 2002 (IN)................................. 699/MUM/2002 Singh Karan, Gujarat (IN); Sunil Aug. 5, 2002 (IN). ... 697/MUM/2002 Sadanand, Gujarat (IN); Vinod Kumar Jan. 22, 2003 (IN)................................... 80/MUM/2003 Gupta, Gujarat (IN) Jan. 22, 2003 (IN)................................... 82/MUM/2003 Correspondence Address: Publication Classification HEDMAN & COSTIGAN P.C. (51) Int. Cl. 1185 AVENUE OF THE AMERICAS A6IK 9/22 (2006.01) NEW YORK, NY 10036 (US) (52) U.S. Cl. .............................................................. 424/468 (22) Filed: May 19, 2005 A dosage form comprising of a high dose, high Solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of Related U.S. Application Data immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of (63) Continuation-in-part of application No. 10/630,446, modified release active ingredient per unit is from 500 mg to filed on Jul. 29, 2003. 1500 mg, a process for preparing the dosage form. Patent Application Publication Feb. 2, 2006 Sheet 1 of 10 US 2006/0024.365A1 FIGURE 1 FIGURE 2 FIGURE 3 Patent Application Publication Feb. 2, 2006 Sheet 2 of 10 US 2006/0024.365A1 FIGURE 4 (a) 7 FIGURE 4 (b) Patent Application Publication Feb. 2, 2006 Sheet 3 of 10 US 2006/0024.365 A1 FIGURE 5 100 ov -- 60 40 20 C 2 4.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin Et Al
    USOO91 01662B2 (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin et al. (45) Date of Patent: *Aug. 11, 2015 (54) COMPOSITIONS WITH MODULATING A61K 47/32 (2013.01); A61 K9/0014 (2013.01); AGENTS A61 K9/0031 (2013.01); A61 K9/0034 (2013.01); A61 K9/0043 (2013.01); A61 K (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot 9/0046 (2013.01); A61 K9/0048 (2013.01); (IL) A61 K9/0056 (2013.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir (58) Field of Classification Search Eini, Ness Ziona (IL); Doron Friedman, CPC ........................................................ A61 K9/12 Karmei Yosef (IL); Tal Berman, Rishon See application file for complete search history. le Ziyyon (IL); David Schuz, Gimzu (IL) (56) References Cited (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot U.S. PATENT DOCUMENTS (IL) 1,159,250 A 11/1915 Moulton (*) Notice: Subject to any disclaimer, the term of this 1,666,684 A 4, 1928 Carstens patent is extended or adjusted under 35 1924,972 A 8, 1933 Beckert 2,085,733. A T. 1937 Bird U.S.C. 154(b) by 0 days. 2,390,921 A 12, 1945 Clark This patent is Subject to a terminal dis 2,524,590 A 10, 1950 Boe claimer. 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (21) Appl. No.: 14/045,528 2.968,628 A 1/1961 Reed 3,004,894 A 10/1961 Johnson et al. (22) Filed: Oct. 3, 2013 3,062,715 A 11/1962 Reese et al.
    [Show full text]
  • Ep 2569287 B1
    (19) TZZ _T (11) EP 2 569 287 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 413/04 (2006.01) C07D 239/46 (2006.01) 09.07.2014 Bulletin 2014/28 (86) International application number: (21) Application number: 11731562.2 PCT/US2011/036245 (22) Date of filing: 12.05.2011 (87) International publication number: WO 2011/143425 (17.11.2011 Gazette 2011/46) (54) COMPOUNDS USEFUL AS INHIBITORS OF ATR KINASE VERBINDUNGEN ALS HEMMER DER ATR-KINASE COMPOSÉS UTILISABLES EN TANT QU’INHIBITEURS DE LA KINASE ATR (84) Designated Contracting States: • VIRANI, Aniza, Nizarali AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Abingdon GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oxfordshire OX144RY (GB) PL PT RO RS SE SI SK SM TR • REAPER, Philip, Michael Abingdon (30) Priority: 12.05.2010 US 333869 P Oxfordshire OX144RY (GB) (43) Date of publication of application: (74) Representative: Coles, Andrea Birgit et al 20.03.2013 Bulletin 2013/12 Kilburn & Strode LLP 20 Red Lion Street (73) Proprietor: Vertex Pharmaceuticals Inc. London WC1R 4PJ (GB) Boston, MA 02210 (US) (56) References cited: (72) Inventors: WO-A1-2010/054398 WO-A1-2010/071837 • CHARRIER, Jean-Damien Abingdon • C. A. HALL-JACKSON: "ATR is a caffeine- Oxfordshire OX144RY (GB) sensitive, DNA-activated protein kinase with a • DURRANT, Steven, John substrate specificity distinct from DNA-PK", Abingdon ONCOGENE, vol. 18, 1999, pages 6707-6713, Oxfordshire OX144RY (GB) XP002665425, cited in the application • KNEGTEL, Ronald, Marcellus Alphonsus Abingdon Oxfordshire OX144RY (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Pirarubicin, an Anthracycline Anticancer Agent, Induces
    ANTICANCER RESEARCH 37 : 6063-6069 (2017) doi:10.21873/anticanres.12054 Pirarubicin, an Anthracycline Anticancer Agent, Induces Apoptosis Through Generation of Hydrogen Peroxide HIDEKI MIZUTANI 1, SAKI HOTTA 1, AYANO NISHIMOTO 1, KENJI IKEMURA 1,2 , DAISUKE MIYAZAWA 1, YOSHIAKI IKEDA 1, TOHRU MAEDA 1, MASAE YOSHIKAWA 1, YUSUKE HIRAKU 3 and SHOSUKE KAWANISHI 4 1College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan; 2Department of Pharmacy, Mie University Hospital, Tsu, Japan; 3Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan; 4Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan Abstract. Background/Aim: Pirarubicin (THP) has shown Pirarubicin (4’-O-tetrahydropyranyl doxorubicin, THP) equal or superior cytotoxicity compared to doxorubicin. One of (Figure 1), a tetrahydropyranyl-derivative doxorubicin, was the main anticancer actions of doxorubicin is believed to be found and developed by Umezawa et al. in 1979 (4). THP involved in ROS (reactive oxygen species) generation. showed equal or superior cytotoxicity in cultured tumor Therefore, the anticancer mechanisms of THP may involve ROS cells, and less cardiotoxicity in hamsters compared to DOX generation. The aim of this study wa s to clarify the mechanisms (5, 6). THP is incorporated into cells about 170-times of THP-induced apoptosis through ROS generation. Materials rapider than DOX in cultured tumor cells (5, 7). THP is and Methods: We analyzed the apoptotic events induced by THP clinically approved for head and neck cancer, stomach in HL-60 cells and HP100 cells, hydrogen peroxide (H 2O2)- cancer, upper urinary tract cancer, uterus cancer, ovarian resistant cells derived from HL-60.
    [Show full text]
  • Phase II Study of Weekly Amrubicin for Refractory Or Relapsed Small Cell
    in vivo 32 : 1581-1586 (2018) doi:10.21873/invivo.11417 Phase II Study of Weekly Amrubicin for Refractory or Relapsed Small Cell Lung Cancer HIROSHIGE YOSHIOKA 1,2,3,* , YOSHIHITO KOGURE 4,5,* , MASAHIKO ANDO 6, CHIYOE KITAGAWA 4, MASAHIRO IWASAKU 1,7 , TAKASHI NIWA 1,8 and HIDEO SAKA 4 1Department of Respiratory Medicine, Kurashiki Central Hospital, Kurashiki, Japan; 2Clinical Research Center, and Departments of 4Respiratory Medicine and 5Medical Oncology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; 3Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata, Japan; 6Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan; 7Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan; 8Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan Abstract. Background: Amrubicin hydrochloride is advances in chemotherapy, patients with advanced small cell administered as second- or third-line therapy for small cell lung cancer still have a median survival time of 9 to 12 lung cancer, and is known to cause severe myelotoxicity. This months and a 2-year survival rate of about 5-20%. study evaluated the efficacy and safety of weekly amrubicin Accordingly, development of more effective chemotherapy for refractory/relapsed small cell lung cancer. Patients and is required. Methods: A single-arm, open-label, multicenter, phase II Amrubicin hydrochloride was developed in Japan and is a study of weekly amrubicin was performed in 21 patients at derivative of the anthracycline doxorubicin hydrochloride. In seven centers in Japan from 2012 through 2015. Results: A Japan, Europe, and the United States, it has been reported that partial response (PR) was noted in one out of the first 18 amrubicin hydrochloride has a good antitumor activity against patients.
    [Show full text]
  • Development of a Selective Tumor-Targeted Drug Delivery System: Hydroxypropyl-Acrylamide Polymer-Conjugated Pirarubicin (P-THP) for Pediatric Solid Tumors
    cancers Review Development of a Selective Tumor-Targeted Drug Delivery System: Hydroxypropyl-Acrylamide Polymer-Conjugated Pirarubicin (P-THP) for Pediatric Solid Tumors Atsushi Makimoto 1,* , Jun Fang 2 and Hiroshi Maeda 3,4,5,6 1 Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan 2 Faculty of Pharmaceutical Science, Sojo University, Kumamoto 860-0082, Japan; [email protected] 3 BioDynamics Research Foundation, Kumamoto 862-0954, Japan; [email protected] 4 Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan 5 Tohoku University, Miyagi 980-8572, Japan 6 Faculty of Medicine, Osaka University, Osaka 565-0871, Japan * Correspondence: [email protected]; Tel.: +81-42-300-5111 (ext. 5177) Simple Summary: Hydroxypropyl acrylamide polymer-conjugated pirarubicin (P-THP), an innova- tive polymer-conjugated anticancer agent, theoretically has highly tumor-specific distribution via the enhanced permeability and retention (EPR) effect. While anthracyclines are extremely important in the treatment of most pediatric solid tumors, P-THP may serve as a less toxic and more effec- tive substitute for conventional anthracyclines in both newly diagnosed and refractory/recurrent pediatric cancers. Abstract: Citation: Makimoto, A.; Fang, J.; Most pediatric cancers are highly chemo-sensitive, and cytotoxic chemotherapy has always Maeda, H. Development of a Selective been the mainstay of treatment. Anthracyclines are highly effective against most types of child- Tumor-Targeted Drug Delivery hood cancer, such as neuroblastoma, hepatoblastoma, nephroblastoma, rhabdomyosarcoma, Ewing System: Hydroxypropyl-Acrylamide sarcoma, and so forth. However, acute and chronic cardiotoxicity, one of the major disadvantages Polymer-Conjugated Pirarubicin of anthracycline use, limits their utility and effectiveness.
    [Show full text]
  • Oncologic Drugs Advisory Committee (ODAC) Meeting December 17, 2019
    PEMBROLIZUMAB-P057V01MK3475 PAGE 1 Advisory Committee Briefing Document High-risk Non-muscle Invasive Bladder Cancer Oncologic Drugs Advisory Committee (ODAC) Meeting December 17, 2019 NDA/BLA# 125514s-066 Drug name: pembrolizumab Applicant: Merck Sharp & Dohme Corp. Combined FDA and Applicant ODAC Briefing Document DISCLAIMER STATEMENT The attached package contains background information prepared by the Applicant and the Food and Drug Administration (FDA) for the panel members of the advisory committee. We have brought the drug pembrolizumab (also known as Keytruda®) to this advisory committee to gain the committee’s insights and opinions. The background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues the Agency identified for the advisory committee’s discussion. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered and all reviews have been finalized. The final determination may be affected by issues not discussed at the advisory committee meeting. This document is available for public release without redaction. PEMBROLIZUMAB-P057V01MK3475 PAGE 2 Advisory Committee Briefing Document High-risk Non-muscle Invasive Bladder Cancer TABLE OF CONTENTS 1 Introduction ............................................................................................................................. 5 1.1 Applicant Proposed Indication .......................................................................................
    [Show full text]
  • Single, Immediate Postoperative Instillation of Chemotherapy
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 29 Research Paper Single, immediate postoperative instillation of chemotherapy in non-muscle invasive bladder cancer: a systematic review and network meta-analysis of randomized clinical trials using different drugs Minyong Kang1, Chang Wook Jeong1, Cheol Kwak1, Hyeon Hoe Kim1, Ja Hyeon Ku1 1Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea Correspondence to: Ja Hyeon Ku, email: [email protected] Keywords: urinary bladder neoplasm, chemotherapy, drug therapy, single instillation, systematic review Received: March 18, 2016 Accepted: May 29, 2016 Published: June 14, 2016 ABSTRACT We performed a network meta-analysis of randomized controlled trials (RCTs) to compare the efficacy of several intravesical chemotherapeutic (IVC) agents after transurethral resection of bladder tumor (TURB) in non-muscle invasive bladder cancer patients. The literature search was conducted using the Embase, Scopus and PubMed databases for RCTs, including patients with single or multiple, primary or recurrent stage Ta or T1 urothelial carcinoma of the bladder managed with a single, immediate instillation of IVC after TURB. Thirteen RCTs met the eligibility criteria. Pair-wise meta-analysis (direct comparison) showed that pirarubicin [hazard ratio (HR): 0.31], epirubicin (HR: 0.62), and MMC (HR: 0.40) were the most effective drugs for reducing tumor recurrence. Bayesian network meta-analysis (indirect comparison) revealed that treatment with pirarubicin (HR: 0.31), MMC (HR: 0.44), or epirubicin (HR: 0.60) was associated with prolonged recurrence-free survival. Among the drugs examined, only pirarubicin reduced disease progression compared to controls. These results suggest that a single, immediate administration of IVC with pirarubicin, MMC, or epirubicin is associated with prolonged recurrence-free survival following TURB in non-muscle invasive bladder cancer patients, though only pirarubicin also reduced disease progression.
    [Show full text]
  • Pharmacology and Antitumour Effects of Intraportal Pirarubicin on Experimental Liver Metastases
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central '." Macmillan Press 1993 Br. J. Cancer (1993), 68, 277-281277 281 Ltd., Pharmacology and antitumour effects of intraportal pirarubicin on experimental liver metastases L.H. Ramirez', J.-N. Munck', C. BognelP, Z. Zhao', P. Ardouin3, M.-F. Poupon4, A. Gouyettes & P. Rougier' 'Departement de Medecine; 2Departement d'Anatomopathologie; 3Service d'Experimentation Animale; 5Laboratoire de Pharmacologie Clinique U 140 INSERM and URA 147 CNRS, Institut Gustave-Roussy, 94805 Villejuif, France and 4URA 620 CNRS Institut Curie, 75005 Paris, France. Summary Early liver metastases have a predominant portal blood supply. Intraportal (i.port.) vein admini- stration of cytotoxics could theoretically achieve enhanced drug concentrations in tumour cells and be effective as adjuvant therapy after resection of colorectal carcinoma. Pirarubicin (which has a higher hepatic extraction than doxorubicin) was investigated on liver metastases of the VX2 rabbit tumour, which were of less than 2 mm in diameter 7 days after cells injection into the portal vein. To evaluate antitumour activity, 24 rabbits were randomised into three groups 7 days after implantation: (a) control, (b) i.v. pirarubicin, (c) i.port. pirarubicin at doses of 2 mg kg-' in both groups. Portal infusions led to no hematological or hepatic toxicity. Pharmacokinetic parameters showed a significantly reduced systemic exposure after i.port. administration. Fourteen days after treatment, livers and lungs were analysed. The mean number (± s.d.) of tumour foci was (a) 8.62 (± 5.4), (b) 4.62 (± 3.2), (c) 2.25 (± 1.4) (P<0.05 a vs c).
    [Show full text]
  • Systematic Review and Individual Patient Data Meta-Analysis Of
    EUROPEAN UROLOGY 69 (2016) 231–244 available at www.sciencedirect.com journal homepage: www.europeanurology.com Platinum Priority – Guidelines Editorial by J. Alfred Witjes on pp. 245–246 of this issue Systematic Review and Individual Patient Data Meta-analysis of Randomized Trials Comparing a Single Immediate Instillation of Chemotherapy After Transurethral Resection with Transurethral Resection Alone in Patients with Stage pTa–pT1 Urothelial Carcinoma of the Bladder: Which Patients Benefit from the Instillation? Richard J. Sylvester a,*, Willem Oosterlinck b, Sten Holmang c, Matthew R. Sydes d, Alison Birtle e, Sigurdur Gudjonsson f, Cosimo De Nunzio g, Kikuo Okamura h, Eero Kaasinen i, Eduardo Solsona j, Bedeir Ali-El-Dein k, Can Ali Tatar l, Brant A. Inman m, James N’Dow n, Jorg R. Oddens o, Marek Babjuk p a EORTC Headquarters, Department of Biostatistics, Brussels, Belgium; b Ghent University Hospital, Department of Urology, Ghent, Belgium; c University of Gothenburg, Department of Urology, Gothenburg, Sweden; d Medical Research Council Clinical Trials Unit at University College London, Department of Cancer and Other Non-Infectious Diseases, London, UK; e Royal Preston Hospital, Rosemere Cancer Centre, Preston, UK; f Skane University Hospital, Department of Urology, Malmo, Sweden; g Ospedale Sant’Andrea, University ‘‘La Sapienza,’’ Department of Urology, Rome, Italy; h Higashi Nagoya Hospital, Department of Urology, Nagoya, Japan; i Hyvinkaa Hospital, Department of Urology, Hyvinkaa, Finland; j Valencia Oncology Institute, Department
    [Show full text]