Invasive Potential of the Coral Tubastraea Coccinea in the Southwest Atlantic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Change in Tropical Rocky Shore Communities Due to an Alien Coral Invasion
Vol. 438: 85–96, 2011 MARINE ECOLOGY PROGRESS SERIES Published October 5 doi: 10.3354/meps09290 Mar Ecol Prog Ser Change in tropical rocky shore communities due to an alien coral invasion B. G. Lages1, B. G. Fleury2, C. Menegola3, J. C. Creed2,* 1Programa de Pós-Graduação em Ecologia e Evolução and 2Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro — UERJ, CEP 20559-900 Rio de Janeiro, RJ, Brasil 3Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia, CEP 40170-290 Salvador, BA, Brasil ABSTRACT: To determine how benthic, tropical, rocky shore communities were affected by the invasive coral species Tubastraea coccinea and T. tagusensis, 8 sites were studied during 2 yr on rocky shores in the southwest Atlantic Ocean (Brazil) by using both fixed and random sampling techniques. Overall, mean cover of T. tagusensis was 0.7% and T. coccinea was 0.4%, (the eleventh and sixteenth most abundant taxa, respectively, throughout the sites). Forty-two major space occupying taxa were registered. In fixed quadrats there was a 76.6% increase per year in density of Tubastraea spp. over the study period. For percent cover no significant difference in cover over time was detected for T. coccinea, but for T. tagusensis and overall (both species) cover increased significantly. The random quadrats data showed subtle differences from the fixed quadrats. There was an increase in density of Tubastraea spp. through time (67.8% per year over the study period). In random samples the density of T. coccinea increased during the study but that of T. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Scleractinia Fauna of Taiwan I
Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99 -
The Invasive Coral Tubastraea Coccinea (Lesson, 1829): Implicatio
Gulf of Mexico Science Volume 32 Article 5 Number 1 Number 1/2 (Combined Issue) 2014 The nI vasive Coral Tubastraea coccinea (Lesson, 1829): Implications for Natural Habitats in the Gulf of Mexico and the Florida Keys William F. Precht Dial Cordy & Associates Emma L. Hickerson Flower Garden Banks National Marine Sanctuary George P. Schmahl Flower Garden Banks National Marine Sanctuary Richard B. Aronson Florida Institute of Technology DOI: 10.18785/goms.3201.05 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Precht, W. F., E. L. Hickerson, G. P. Schmahl and R. B. Aronson. 2014. The nI vasive Coral Tubastraea coccinea (Lesson, 1829): Implications for Natural Habitats in the Gulf of Mexico and the Florida Keys. Gulf of Mexico Science 32 (1). Retrieved from https://aquila.usm.edu/goms/vol32/iss1/5 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Precht et al.: The Invasive Coral Tubastraea coccinea (Lesson, 1829): Implicatio SHORT PAPERS AND NOTES Gulf of Mexico Science, 2014(1–2), pp. 55–59 Gala´pagos (Wells, 1982; Cairns, 1991), Costa E 2014 by the Marine Environmental Sciences Consortium of Alabama Rica and Colombia (von Prahl, 1987), the Red Sea and Arabian Sea (Sheppard and Sheppard THE INVASIVE CORAL TUBASTRAEA COCCI- 1991), Brazil (Figueira de Paula and Creed, NEA (LESSON, 1829): IMPLICATIONS FOR 2004; Sampaio et al., 2012), western Africa NATURAL HABITATS IN THE GULF OF (Laborel, 1974), the greater Caribbean basin MEXICO AND THE FLORIDA KEYS.—The (Cairns, 2000), the western Caribbean (Fenner, impact of nonnative, or exotic, species is 1999), and now the GOM, Florida, and the considered to be a leading cause of native-species Bahamas (Fenner, 2001; Fenner and Banks 2004; extinction and overall habitat degradation (Sim- Sammarco, 2007). -
An Outcome of Larval Or Later Benthic Processes?
Journal of Experimental Marine Biology and Ecology 452 (2014) 22–30 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes? Damián Mizrahi a,SergioA.Navarreteb,AugustoA.V.Floresa,⁎ a Universidade de São Paulo, Centro de Biologia Marinha (CEBIMar/USP), Rod. Manoel Hipólito do Rego, km 131.5, 11600-000, São Sebastião, São Paulo, Brazil b Estación Costera de Investigaciones Marinas, Las Cruces, Center for Marine Conservation, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile article info abstract Article history: Larval behavior in the water column and preference among natural benthic habitats are known to determine Received 28 March 2013 initial spatial distribution patterns in several sessile marine invertebrates. Such larval attributes can be adaptive, Received in revised form 18 November 2013 promoting adult benthic distributions which maximize their fitness. Further benthic processes may, however, Accepted 28 November 2013 substantially change initial distribution of settlers. In this study, we first characterized spatial distributions of Available online 28 December 2013 adult colonies and single-polyp recruits of the invasive azooxanthellate coral Tubastraea coccinea over substrates of different orientation, and evaluated their consistency at both small (several tens of meters) and intermediate Keywords: fi Competition (a few km) spatial scales. We then assessed, through eld and laboratory experiments, larval preferences and Habitat orientation relative settlement and recruitment rates on surfaces with different orientations to determine whether processes Larval behavior taking place during the larval and early post-larval stages could help explain the distribution patterns of recruits Sedimentation and adult colonies. -
The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as -
Cnidaria, Scleractinia) Around Ilha Grande, Brazil
SPATIAL DISTRIBUTION AND ABUNDANCE OF NONINDIGENOUS CORAL GENUS Tubastraea (CNIDARIA, SCLERACTINIA) AROUND ILHA GRANDE, BRAZIL PAULA, A. F.1 and CREED, J. C.2 1Laboratório de Celenterologia, Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil 2Laboratório de Ecologia Marinha Bêntica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro. Rua São Francisco Xavier, 524, PHLC Sala 220, CEP 20559-900, Rio de Janeiro, RJ, Brazil Correspondence to: Alline de Paula, Laboratório de Celenterologia, Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brazil, e-mail: [email protected] Received November 11, 2003 – Accepted March 31, 2004 – Distributed November 30, 2005 (With 6 figures) ABSTRACT The distribution and abundance of azooxanthellate coral Tubastraea Lesson, 1829 were examined at different depths and their slope preference was measured on rocky shores on Ilha Grande, Brazil. Tubastraea is an ahermatypic scleractinian nonindigenous to Brazil, which probably arrived on a ship’s hull or oil platform in the late 1980’s. The exotic coral was found along a great geographic range of the Canal Central of Ilha Grande, extending over a distance of 25 km. The abundance of Tubastraea was quantified by depth, using three different sampling methods: colony density, visual estimation and intercept points (100) for percentage of cover. Tubastraea showed ample tolerance to temperature and desiccation since it was found more abundantly in very shallow waters (0.1-0.5 m), despite the fact that hard substratum is available at greater depths at all the stations sampled. -
Marine Bioinvasions in the Brazilian Coast: Brief Report on History of Events, Vectors, Ecology, Impacts and Management of Non-Indigenous Species
Chapter 27 Marine Bioinvasions in the Brazilian Coast: Brief Report on History of Events, Vectors, Ecology, Impacts and Management of Non-indigenous Species Carlos Eduardo Leite Ferreira, Andrea de Oliveira Ribeiro Junqueira, Maria Célia Villac, and Rubens Mendes Lopes 27.1 Introduction The Brazilian coast extends for about 8000 km from Cape Orange (4°N) to Chui (34°S) (Fig. 27.1). This long coastline comprises a variety of ecosystems under the influence of oligotrophic waters transported by two western boundary currents, the Brazil and North Brazil currents (Stramma and England 1999), together with con- tinental influences related to a wide spectrum of river inputs, the largest of which being the massive Amazon River plume in the north and the combination of the La Plata and Patos Lagoon outflows in the south (Castro Filho and Miranda 1998). Seasonal or intermittent intrusions of cold and nutrient-rich oceanic waters carried underneath the Brazil and North Brazil currents (the so-called South Atlantic Central Water) is another important physical forcing on regional shelf ecosystems of Brazil, particularly on the Southern Brazilian Bight and more southern areas (Lopes et al. 2006). Regionally important coastal ecosystems are (1) sandy beaches, occurring from north to south, with the largest ones in southernmost areas of the state of Rio Grande do Sul; (2) mangrove forests, which occur from the northern tip of the country to the state of Santa Catarina in the south, (3) coral reefs, ranging from Maranhão to Bahia including the largest coral reef system of the South Atlantic, the Abrolhos Reefs (Leão et al. -
Assessment of Species Composition, Diversity and Biomass in Marine Habitats and Subhabitats Around Offshore Islets in the Main Hawaiian Islands
ASSESSMENT OF SPECIES COMPOSITION, DIVERSITY AND BIOMASS IN MARINE HABITATS AND SUBHABITATS AROUND OFFSHORE ISLETS IN THE MAIN HAWAIIAN ISLANDS January 2008 COVER Colony of Pocillopora eydouxi ca. 2 m in longer diameter, photographed at 9 m depth on 30-Aug- 07 outside of Kāpapa Islet, O‘ahu. ASSESSMENT OF SPECIES COMPOSITION, DIVERSITY AND BIOMASS IN MARINE HABITATS AND SUBHABITATS AROUND OFFSHORE ISLETS IN THE MAIN HAWAIIAN ISLANDS Final report prepared for the Hawai‘i Coral Reef Initiative and the National Fish and Wildlife Foundation S. L. Coles Louise Giuseffi Melanie Hutchinson Bishop Museum Hawai‘i Biological Survey Bishop Museum Technical Report No 39 Honolulu, Hawai‘i January 2008 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2008 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2008-001 to the Hawaii Biological Survey EXECUTIVE SUMMARY The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lāna‘i (Pu‘u Pehe and Po‘o Po‘o Islets), Maui (Kaemi and Hulu Islets and the outer rim of Molokini), off Kaulapapa National Historic Park on Moloka‘i (Mōkapu, ‘Ōkala and Nāmoku Islets) and O‘ahu (Kāohikaipu Islet and outside Kāpapa Island) in 2007. Survey protocol at all sites consisted of an initial reconnaissance survey on which all algae, invertebrates and fishes that could be identified on site were listed and or photographed and collections of algae and invertebrates were collected for later laboratory identification. -
Coral Reef Ecosystem Research Plan Noaa for Fiscal Years 2007 to 2011
CORAL REEF ECOSYSTEM RESEARCH PLAN NOAA FOR FISCAL YEARS 2007 TO 2011 NOAA Technical Memorandum CRCP 1 CITATION: Puglise, K.A. and R. Kelty (eds.). 2007. NOAA Coral Reef Ecosystem Research Plan for Fiscal Years 2007 to 2011. Silver Spring, MD: NOAA Coral Reef Conservation Program. NOAA Technical Memorandum CRCP 1. 128 pp. PLAN STEERING COMMITTEE: Gary Matlock and Barbara Moore (co-chairs) Eric Bayler, Andy Bruckner, Mark Eakin, Roger Griffis, Tom Hourigan, and David Kennedy FOR MORE INFORMATION: For more information about this report or to request a copy, please contact NOAA’s Coral Reef Conservation Program at 301-713-3155 or write to: NOAA Coral Reef Conservation Program; NOAA/NOS/OCRM; 1305 East West Highway; Silver Spring, MD 20910 or visit www.coralreef.noaa.gov. DISCLAIMER: Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. NOAA Coral Reef Ecosystem Research Plan for Fiscal Years 2007 to 2011 K.A. Puglise and R. Kelty (eds.) National Oceanic and Atmospheric Administration January 2007 NOAA Technical Memorandum CRCP 1 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator ACKNOWLEDGEMENTS We wish to express gratitude to all of the people, named and unnamed, who contributed to this Research Plan. This document truly represents the collective work of several individuals. In particular, -
Complete Mitochondrial Genome of Echinophyllia Aspera (Scleractinia
A peer-reviewed open-access journal ZooKeys 793: 1–14 (2018) Complete mitochondrial genome of Echinophyllia aspera... 1 doi: 10.3897/zookeys.793.28977 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Complete mitochondrial genome of Echinophyllia aspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning Wentao Niu1, Shuangen Yu1, Peng Tian1, Jiaguang Xiao1 1 Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China Corresponding author: Wentao Niu ([email protected]) Academic editor: B.W. Hoeksema | Received 9 August 2018 | Accepted 20 September 2018 | Published 29 October 2018 http://zoobank.org/8CAEC589-89C7-4D1D-BD69-1DB2416E2371 Citation: Niu W, Yu S, Tian P, Xiao J (2018) Complete mitochondrial genome of Echinophyllia aspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning. ZooKeys 793: 1–14. https://doi. org/10.3897/zookeys.793.28977 Abstract Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phy- logenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitog- enome sequence of the stony coral Echinophyllia aspera (Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C). -
Substratum Preference During Recruitment of Two Invasive Alien Corals Onto Shallow-Subtidal Tropical Rocky Shores
MARINE ECOLOGY PROGRESS SERIES Vol. 330: 101–111, 2007 Published January 25 Mar Ecol Prog Ser Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores Joel C. Creed1,*, Alline F. De Paula2 1Laboratório de Ecologia Marinha Bêntica, Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro – UERJ, PHLC Sala 220, Rua São Francisco Xavier 524, CEP 20559-900, Rio de Janeiro, RJ, Brazil 2Laboratório de Celenterologia, Departamento de Invertebrados, Museu Nacional-Universidade Federal do Rio de Janeiro – Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil ABSTRACT: Two species of azooxanthellate coral, Tubastraea coccinea Lesson, 1829 and T. tagu- sensis Wells, 1982, are alien to the rocky shores of Brazil. The influence of 5 substratum types — wood, granite, concrete, steel and ceramic tiles — on their recruitment was investigated experimen- tally. On the artificial plates, mean density of T. tagusensis varied from 202 to 512 colonies m–2 and that of T. coccinea varied from 187 to 233 colonies m–2 after 17 mo. The density of Tubastraea spp. recruits was similar to those found in coral reef environments worldwide. A strong coupling between local adult density and recruitment density was found at a scale of <1 m. Substratum type and spe- cies were important in determining density and size of the recruits of the alien corals. The density of T. tagusensis on cement was higher than on ceramic tiles or steel, but T. coccinea density did not dif- fer significantly among substratum types.