Life-History Characteristics of Pseudoplatystoma Metaense (Teleostei: Siluriformes: Pimelodidae) from the Northwestern Orinoco River Basin

Total Page:16

File Type:pdf, Size:1020Kb

Life-History Characteristics of Pseudoplatystoma Metaense (Teleostei: Siluriformes: Pimelodidae) from the Northwestern Orinoco River Basin Neotropical Ichthyology, 16(1): e160140, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160140 Published online: 26 March 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 31 March 2018 (ISSN 1679-6225) Original article Life-history characteristics of Pseudoplatystoma metaense (Teleostei: Siluriformes: Pimelodidae) from the northwestern Orinoco River Basin Alfredo Pérez1 and Nidia Noemí Fabré2 The tiger shovelnose catfish (Pseudoplatystoma metaense) identified in literature prior to 2007 as P. tigrinum is the most important catfish species in the Orinoco River fishery, because of its abundance and high market price. The aim of this study was to obtain age, growth and population parameters of the of tiger shovelnose catfish. A total of 2,183 catfish, were sampled during 1996-2003 from the commercial fishery of the northwestern Orinoco River Basin in Venezuela, and were aged by examination of otoliths. Validation of otolith annuli was achieved with marginal increment analysis. Results suggest that, the opaque and translucent zones of otoliths were formed once per year. Length-weight relation and the von Bertalanffy growth model parameters were used to evaluate growth and other population parameters. A strong link between the annual flood pulse and opaque zone formation was confirmed in tiger shovelnose catfish. The total mortality (Z) and natural mortality (M) were estimated. Based in the reference points for optimal and limit fishing mortality rates (Fopt and Flimit) this species is exploited above optimum levels. We thus recommend a closed fishing season during their seasonal reproduction, and establishment of a system of fish refuges to help sustain the population. Keywords: Age, Growth, Otoliths, Overfishing, Venezuela. O bagre capararí (Pseudoplatystoma metaense) identificado na literatura antes de 2007 como P. tigrinum é uma das espécies de bagres mais importantes da pesca no noroeste do rio Orinoco, por sua abundância e alto preço de comercialização no mercado. O objetivo deste estudo foi obter parâmetros populacionais sobre a idade e crescimento do bagre capararí. Um total de 2.183 exemplares de P. metaense foram examinados desde 1996 até 2003, coletados da frota comercial artesanal do rio Apure na Venezuela. A idade foi determinada pela examinação dos otólitos. A validação da idade foi estimada com a análise de incremento marginal. As zonas opacas e translúcidas dos otólitos foram formada anualmente. A relação comprimento-peso e a equação de von Bertalanffy foram usadas para avaliar o crescimento e outros parâmetros populacionais. Uma forte relação entre o pulso anual de inundação e a formação de zonas opacas foi confirmada emP. metaense. A mortalidade total (Z) e a mortalidade natural (M) foram estimadas. Portanto, baseado nos pontos de referência biológicos (Fopt e Flim) esta espécie encontra-se sobreexplotada acima do nível ótimo. Recomenda-se que o período de defeso deva ser sincronizado com o período de reprodução da espécie e um sistema de reservas de pesca deveria ser utilizado para ajudar a sustentabilidade da população. Palavras-chave: Crescimento, Idade, Otólito, Sobrepesca, Venezuela. Introduction In the inland fisheries of Venezuela, the “bagres rayados” (Pseudoplatystoma orinocoense Buitrago-Suárez & Burr, The large-bodied catfishes of the family Pimelodidae 2007 and P. metaense Buitrago-Suárez & Burr, 2007, in are among the dominant commercial species in the Orinoco literature prior to 2007 identified as P. fasciatum and P. River Basin, forming an important part of the landed catch tigrinum, respectively) have composed on average 15.7% of in inland fisheries (Castillo et al., 1988; Novoa, 2002). In the landed catch from 1996 to 2003 (contributing on average Venezuela, these highly valued resources are marketed 6,121 t·year-1). whole, usually fresh on ice, at markets in various state The tiger shovelnose catfishPseudoplatystoma metaense capitals. They are also seasonally exported to Colombia Buitrago-Suárez & Burr, 2007, occurs in benthic or near (Novoa, 2002). bottom habitats of main rivers throughout the Orinoco Basin 1Laboratorio de Biología, Programa Ciencias del Agro & Mar UNELLEZ-APURE, San Fernando, ZP 7001, Edo. Apure, Venezuela. [email protected], http://orcid.org/0000-0002-4954-2236 (corresponding author) 2Instituto de Ciências Biológicas e da Saúde (ICBS), Setor Ecologia e Conservação, Universidade Federal de Alagoas, 57072-900 Maceió, AL, Brazil. [email protected] e160140[1] Neotropical Ichthyology, 16(1): e160140, 2018 2 Age and growth of Pseudoplatystoma metaense and it is landed in commercial quantities from all along the northwestern Orinoco River Basin; it is based on age Apure River (Barbarino Duque, Winemiller, 2003; Castillo estimates from asterisci otoliths. Results will be important et al., 1988; Machado-Allison, 1987; Novoa, 2002). for sustainable management of this economically important There is a lack of reliable information on the longevity, fishery resource. growth parameters, mortality rates, and population characteristics of P. metaense, despite its ecological and Material and Methods commercial importance. The juveniles inhabit floodplain areas (inundated savannas) of the Apure River (Barbarino, Commercial landings of Pseudoplatystoma metaense 2005). In Venezuela, there has been only one study on age from the northwestern Orinoco River Basin were sampled and growth of P. metaense but without age validation (Reid, opportunistically from July 1996 to December 2003 (Fig.1). 1983). Samples obtained from January 2000 to December 2003 The accurate determination of fish age is the key to were collected on a monthly basis among all fishing boats in estimating growth and mortality rates (Beamish, Fournier, the artisanal fleet from the lower Apure River. 1981; Marriott, Cappo, 2000). Errors in determining fish Specimens were compared with reference collections of age can result in ambiguous demographic parameters and this species in the Museo de Ciencias Naturales de Guanare provide misleading impressions of the production potential of Universidad Nacional Experimental de los Llanos of fish stocks (Brothers, 1983). Occidentales Ezequiel Zamora (e.g., voucher MCNG 31287, This work represents the first comprehensive study Laguna Tineo, 08º11’25”N 63º28’20”W, Orinoco River, of age, growth, and mortality of P. metaense from the Anzoátegui, Venezuela) to verify identification. Fig. 1. Location of the sampling points in the study area of the northwestern Orinoco River Basin of the fishery for Pseudoplatystoma metaense. e160140[2] Neotropical Ichthyology, 16(1): e160140, 2018 A. Pérez & N. N. Fabré 3 All specimens were captured with gillnets (3 m x 120 m x The periodic regression model is a useful tool to 8 cm stretch mesh) along the main river channel. Additional evaluate biological rhythms (Angelini et al., 1992). MIA juvenile specimens were obtained by our research team data were fitted to a periodic regression model (Bliss, using gillnets of 3 cm stretch mesh. 1970) to evaluate possible periodic formation of mark in For all fish, total length (TL, cm) was measured from the otoliths, using the following equation: tip of upper jaw to tip of longest caudal lobe, eviscerated weight (Wev to nearest g) was recorded, and whenever y = α + β1 * cos(q) + β2 * sen(q) + d possible, sex was determined by examination of the gonads. The relationships between TL and Wev, were described by Where: y = dependent variable; β = regression b the power function: Wev = a*TL , where: “a” and “b” are coefficient; α = mean general; q = angular frequency regression coefficients from simple linear regression. These (2p*t/k); t = independent variable; k = number of days relationships were fitted to log10-transformed data. An or months; p = pi; d = random error. The model was analysis of covariance (ANCOVA) was used to determine if evaluated by the significance of the F value and analysis of there were significant differences (P=0.05) in the TL versus studentized residuals (Kleinbaum et al., 1988). Parameters Wev relationships between sexes for P. metaense. Multiple of the periodic model were estimated by a sub-routine comparisons were performed with Least Significant (macro) implemented in spread sheet software. Difference test (LSD; Sokal, Rohlf, 1981). Trends in length Because the peak spawning period of P. metaense and weight relationships of fish over time also were assessed usually occurs in late May (Castillo et al., 1988; Pérez et using ANCOVA. al., 2012), all fish were assigned a birth date of 1 June to assure proper year-class identification. Ages were assigned Otolith preparation and analysis. Otolith removal, from counts of annual growth increments consisting of measurement, and preparation followed the procedures alternating opaque and translucent rings from asteriscus described by Pérez, Fabré (2003). All age estimates otoliths (opaque rings were counted). Annual growth were based on the analysis of growth annuli in asteriscus annuli were counted without reference to fish length or otoliths. The whole otoliths were examined under a Leica date of capture. MZ5 stereoscopic microscope at 1.65x magnification with Each asteriscus otolith was read twice, with a separation reflected light on a black background. of 15 days between each reading by the same reader. When Otolith images were recorded using a digital video the counts differed, these otoliths were re-examined a third camera connected to the microscope. The images were time. Otoliths with
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Brachyplatystoma Tigrinum) Ecological Risk Screening Summary
    Tigerstriped Catfish (Brachyplatystoma tigrinum) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2014 Revised, October 2017, November 2017 Web Version, 9/7/2018 Photo: Eduardo Baena. Licensed under Creative Commons BY-NC 3.0. Available: http://eol.org/data_objects/26103818. (October 12, 2017). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2010): “South America: Amazon River basin.” From Eschmeyer et al. (2017): “Distribution: Amazon River basin: Brazil, Bolivia, Colombia and Peru.” 1 Status in the United States No records of Brachyplatystoma tigrinum in the wild in the United States were found. Chapman et al. (1994) list Brachyplatystoma tigrinum, under the name Merodontotus tigrinus, as imported to the United States in October 1992. Means of Introductions in the United States No records of Brachyplatystoma tigrinum in the wild in the United States were found. Remarks Brachyplatystoma tigrinum is the valid name for this species (Eschmeyer et al. 2017) but some databases have yet to incorporate this change and still use Merodontotus tigrinus as the valid name. Information searches were conducted using both names. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Brachyplatystoma tigrinum (Britski 1981) is the valid name for this species. It was originally described as Merodontotus tigrinus. From ITIS (2014): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Siluriformes Family Pimelodidae Genus Merodontotus Britski, 1981 Species Merodontotus tigrinus Britski, 1981” Size, Weight, and Age Range From Froese and Pauly (2010): “Max length: 60.0 cm TL male/unsexed; [Lundberg and Littmann 2003].” 2 Environment From Froese and Pauly (2010): “Freshwater; demersal.
    [Show full text]
  • Deep Pools: Ecological Sanctuaries for Steindachneridion Melanodermatum, a Large Endemic and Endangered Pimelodid of the Iguaçu River
    water Article Deep Pools: Ecological Sanctuaries for Steindachneridion melanodermatum, a Large Endemic and Endangered Pimelodid of the Iguaçu River Lucileine de Assumpção 1,* , Maristela Cavicchioli Makrakis 1 , Jhony Ferry Mendonça da Silva 1 , Karane Allison Silvestre de Moraes 1 , Suelen Fernanda Ranucci Pini 1,2, Patrícia Sarai da Silva 1, Elaine Antoniassi Luiz Kashiwaqui 1,3, Eduardo Gentil 4 , Lenice Souza-Shibatta 5 , Oscar Akio Shibatta 5 and Sergio Makrakis 1,* 1 Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca, Grupo de Pesquisa em Tecnologia em Ecohidráulica e Conservação de Recursos Pesqueiros e Hídricos—GETECH, Universidade Estadual do Oeste do Paraná—UNIOESTE, Rua da Faculdade, 645, Jardim Santa Maria, Toledo 85903-000, PR, Brazil; [email protected] (M.C.M.); [email protected] (J.F.M.d.S.); [email protected] (K.A.S.d.M.); [email protected] (S.F.R.P.); [email protected] (P.S.d.S.); [email protected] (E.A.L.K.) 2 Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul—Campus Coxim Rua Salime Tanure s/n, Bairro Santa Tereza, Coxim 79400-000, MS, Brazil 3 Grupo de Estudos em Ciências Ambientais e Educação—GEAMBE, Universidade Estadual de Mato Grosso do Sul—UEMS, BR 163 Km 20.2, Bairro Universitário, Mundo Novo 79980-000, MS, Brazil 4 Citation: Assumpção, L.d.; Makrakis, Grupo de Gestão, Ecologia e Tecnologia Marinha—GTMar, Universidade do Estado de Santa M.C.; Silva, J.F.M.d.; Moraes, K.A.S.d.; Catarina—UDESC Campus Laguna, Rua Cel. Fernandes Martins, 270, Progresso, Pini, S.F.R.; Silva, P.S.d.; Kashiwaqui, Laguna 88790-000, SC, Brazil; [email protected] 5 Museu de Zoologia, Universidade Estadual de Londrina—UEL, Rodovia Celso Garcia Cid—PR 445, Km 380, E.A.L.; Gentil, E.; Souza-Shibatta, L.; Londrina 86051-990, PR, Brazil; [email protected] (L.S.-S.); [email protected] (O.A.S.) Shibatta, O.A.; et al.
    [Show full text]
  • Goliath Catfish Spawning in the Far Western Amazon Confirmed by the Distribution of Mature Adults, Drifting Larvae and Migrating Juveniles
    www.nature.com/scientificreports OPEN Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, Received: 28 June 2016 Accepted: 28 December 2016 drifting larvae and migrating Published: 06 February 2017 juveniles Ronaldo B. Barthem1, Michael Goulding2, Rosseval G. Leite3, Carlos Cañas2, Bruce Forsberg3, Eduardo Venticinque4, Paulo Petry5, Mauro L. de B. Ribeiro6, Junior Chuctaya7 & Armando Mercado2 We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species—B. rousseauxii, B. platynemum, and B. juruense—spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born. The Amazon has two main groups of migratory fish species, and they belong to the orders Siluriformes (catfishes) and Characiformes (characins)1–3.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Siluriformes: Pimelodidae), a New Species of Catfish from Affluent Rivers of Laguna Merín, Uruguay, South America
    ISSN 0097-3157 PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 157: 149-162 JULY 2008 Pimelodus pintado (Siluriformes: Pimelodidae), a new species of catfish from affluent rivers of Laguna Merín, Uruguay, South America MARÍA DE LAS MERCEDES AZPELICUETA Division Zoología Vertebrados, Museo de La Plata, Paseo del Bosque, 1900 La Plata, ARGENTINA, Email: [email protected] JOHN G. LUNDBERG Department of Ichthyology, Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103 USA, Email: [email protected] MARCELO LOUREIRO Zoología Vertebrados, Facultad de Ciencias, Iguá 4438, Montevideo, URUGUAY, Email: [email protected] ABSTRACT.—We describe a new species of pimelodid catfish belonging to the genus Pimelodus from the Cebollatí, Tacuarí and Yaguarón rivers emptying into the Laguna Merín, Uruguay. Pimelodus pintado n. sp. is distinguished from congeners by the combination of its densely spotted pigmentation pattern with many small dots irregularly placed over flanks, head and all fins, and, when fresh, metallic golden background color, plus thick striated lips with prominent rictal folds, long snout, prominent upper jaw, anterior naris far from snout margin, narrow premaxillary tooth bands with rounded posterolateral corners, tooth- less prevomer and 22-26 gill rakers on first branchial arch. Pimelodus pintado is compared to other spotted species of Pimelodus including P. maculatus, P. heraldoi, P. absconditus, P. microstoma, P. mysteriosus, P. paranaensis, P. platicirris, P. ortmanni, P. britskii, P. fur, P. grosskopfii, P. navarroi, P. coprophagus and P. punctatus. New taxon: Pimelodus pintado Azpelicueta, Lundberg and Loureiro INTRODUCTION Merín (Fig. 1). The first specimens of the new species were detected in 1997 by one of us (MMA) in the collection The type species of the taxonomically challenging of the Museu de Ciências e Tecnologia, Porto Alegre, and genus Pimelodus is P.
    [Show full text]
  • Inland Waters
    477 Fish, crustaceans, molluscs, etc Capture production by species items America, South - Inland waters C-03 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Amérique du Sud - Eaux continentales (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies América del Sur - Aguas continentales English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2012 2013 2014 2015 2016 2017 2018 Nombre inglés Nombre científico Grupo de especies t t t t t t t Common carp Cyprinus carpio 11 321 114 134 179 169 46 240 Cyprinids nei Cyprinidae 11 425 429 423 400 400 400 400 ...A Caquetaia kraussii 12 ... ... 11 182 111 559 64 Nile tilapia Oreochromis niloticus 12 5 7 3 6 255 257 159 Tilapias nei Oreochromis (=Tilapia) spp 12 9 133 9 210 9 093 8 690 8 600 8 600 8 600 Oscar Astronotus ocellatus 12 1 847 1 862 1 951 1 941 1 825 1 813 1 815 Velvety cichlids Astronotus spp 12 391 385 318 571 330 345 334 Green terror Aequidens rivulatus 12 26 38 20 24 36 30 34 Cichlids nei Cichlidae 12 13 013 13 123 12 956 12 400 12 403 12 735 12 428 Arapaima Arapaima gigas 13 1 478 1 504 1 484 2 232 1 840 2 441 1 647 Arawana Osteoglossum bicirrhosum 13 1 642 1 656 1 635 1 570 1 571 2 200 2 056 Banded astyanax Astyanax fasciatus 13 1 043 1 052 1 039 1 000 1 000 1 000 1 000 ...A Brycon orbignyanus 13 8 8 8 8 8 9 14 ...A Brycon dentex 13 35 20 5 6 11 10 6 ...A Brycon spp 13 ..
    [Show full text]
  • Digenea of Hoplias Intermedius and Hoplias Malabaricus (Actinopterygii
    Original Article Braz. J. Vet. Parasitol., Jaboticabal, v. 24, n. 2, p. 129-135, abr.-jun. 2015 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612015038 Digenea of Hoplias intermedius and Hoplias malabaricus (Actinopterygii, Erythrinidae) from upper São Francisco River, Brazil Digenea de Hoplias intermedius e Hoplias malabaricus (Actinopterygii, Erythrinidae) do alto rio São Francisco, Brasil Danielle Priscilla Correia Costa1; Cassandra Moraes Monteiro2; Marilia Carvalho Brasil-Sato2* 1Programa de Pós-graduação em Ciências Veterinárias, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 2Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil Received November 7, 2014 Accepted March 11, 2015 Abstract A total of 103 specimens of Hoplias intermedius (Günther, 1864) and 86 specimens of H. malabaricus (Bloch, 1794) from the upper São Francisco River, State of Minas Gerais were collected between April 2011 and August 2013, and their parasitic fauna were investigated. Four species of Digenea were found: metacercariae of Austrodiplostomum sp., and Ithyoclinostomum sp.; and adult specimens of Phyllodistomum spatula Odhner, 1902, and Pseudosellacotyla lutzi (Freitas, 1941) Yamaguti, 1953. The prevalence of the metacercariae was higher than that of the adult digeneans of erythrinids from the upper São Francisco River as a result of piscivorous feeding habits of these adult erythrinids. The presence of metacercariae and adult digeneans indicate that they act as intermediate and definitive hosts, respectively, in their biological cycles. Hoplias intermedius is a new host for the four species of Digenea, and the São Francisco River basin is a new location for the known geographical distributions of P.
    [Show full text]
  • One Fish, Two Fish, Red Fish, Blue Fish: the Economic and Environmental Impacts of Commercial Fishing Jessica Glenn SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2006 One Fish, Two Fish, Red Fish, Blue Fish: The Economic and Environmental Impacts of Commercial Fishing Jessica Glenn SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Agricultural and Resource Economics Commons, and the Natural Resource Economics Commons Recommended Citation Glenn, Jessica, "One Fish, Two Fish, Red Fish, Blue Fish: The cE onomic and Environmental Impacts of Commercial Fishing" (2006). Independent Study Project (ISP) Collection. 282. https://digitalcollections.sit.edu/isp_collection/282 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. One Fish, Two Fish, Red Fish, Blue Fish: The Economic and Environmental Impacts of Commercial Fishing Jessica Glenn Bucknell University Environmental Studies Advisor: Dr. Luciano Fogaça de A. Montag Department of Zoology Museu Paraense Emilio Goeldi 11 December 2006 SIT Brazil: Amazon Resource Management and Human Ecology Fall 2006 Abstract Fish and fisheries play an important role in the Amazon River Basin. Fishing provides jobs to people of both urban and rural communities, and fish are a major source of protein in people’s diets and a major part of the Amazon River ecosystem. In recent years commercial fishing has increased due to greater access to both domestic and international markets, and government incentives which have helped fishermen obtain better equipment and boats.
    [Show full text]
  • FISH STOCK ASSESSMENT of PIRAPUTANGA Brycon Microlepis in the CUIABÁ RIVER BASIN, PANTANAL of MATO GROSSO, BRAZIL
    YIELD PER RECRUIT ANALYSIS OF Brycon microlepis 165 FISH STOCK ASSESSMENT OF PIRAPUTANGA Brycon microlepis IN THE CUIABÁ RIVER BASIN, PANTANAL OF MATO GROSSO, BRAZIL MATEUS, L. A. de F.1 and ESTUPIÑÁN, G. M. B.2 1Departamento de Produção Animal, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, MT, Brazil 2Centro de Pesquisas em Biologia Aquática, INPA, CEP 69011-970, Manaus, AM, Brazil Correspondence to: Lúcia A. F. Mateus, Departamento de Ecologia, IB, Unesp, CEP 13506-900, Rio Claro, SP, Brazil, e-mail: [email protected] Received November 27, 2000 – Accepted March 28, 2001 – Distributed February 28, 2002 (With 4 figures) ABSTRACT Fork length measurements of individuals of Brycon microlepis landed and commercialized at the Porto Market in Cuiabá, MT, from May-October 1996 to May-October 1997 were used to estimate growth and mortality parameters for this species. The average estimated populational parameters were: L∞ = 705 mm, k = 0.275 year–1, C = 0.775, WP = 0.465, Lc = 164 mm, M = 0.585 year–1, Z = 0.822 year–1, with F = 0.237 year–1. Yield per recruit analysis suggests that the stock is not yet overexploited. Key words: Brycon, mortality, yield per recruit, fisheries management. RESUMO Avaliação do estoque pesqueiro da piraputanga Brycon microlepis na bacia do rio Cuiabá, Pantanal Mato-grossense Medidas de comprimento furcal obtidas de exemplares de Brycon microlepis desembarcados e comer- cializados no Mercado do Porto em Cuiabá, MT, no período de maio a outubro de 1996 e de maio a outubro de 1997, foram utilizadas para a obtenção de estimativas dos parâmetros de crescimento e mortalidade da espécie.
    [Show full text]
  • Piraíba (Brachyplatystoma Filamentosum and Brachyplatystoma Capapretum) (Siluriformes: Pimelodidae) in White-Water Rivers
    Molecular genetics as a tool for fisheries management in the Brazilian Amazon: Piraíba (Brachyplatystoma filamentosum and Brachyplatystoma capapretum) (Siluriformes: Pimelodidae) in white-water rivers GIULIANO MAIA HUERGO, ROSA JAQUELINE FILGUEIRAS-SOUZA, JACQUELINE DA SILVA BATISTA, KYARA FORMIGA-AQUINO & JOSÉ ANTÔNIO ALVES-GOMES* National Institute for Amazonian Research (INPA), Molecular Biology Thematic Laboratory (LTBM), Av. André Araújo 2936, Aleixo, CEP 69060-000, Manaus, Amazonas, Brazil. *E-mail: [email protected] Abstract. Specimens from two fish species commonly known as piraíba (Brachyplatystoma filamentosum and Brachyplatystoma capapretum) were sampled from fish landings in nine white-water river channel regions of the Brazilian Amazon. We genetically characterized these specimens, through sequencing of the mitochondrial DNA control region. Of the 337 samples collected, 66.77% belonged to B. filamentosum, while the remaining 33.23% belonged to B. capapretum. For both species, the haplotype diversity (Hd) values were high (>0.95). However, the nucleotide diversity (π) was higher in B. filamentosum (0.0118) than in B. capapretum (0.0041). We compared these values with the nucleotide diversity values of the control regions of other Amazonian fish species being overexploited or at risk of overexploitation. Keywords: catfish, control region, filhote, fisheries genetics, mitochondrial DNA Resumo. A genética molecular como ferramenta para o manejo da pesca na Amazônia brasileira: o caso da piraíba (Brachyplatystoma filamentosum and Brachyplatystoma capapretum) (Siluriformes: Pimelodidae) nos rios de águas brancas. Indivíduos de duas espécies de peixes popularmente conhecidas como piraíba Brachyplatystoma filamentosum e Brachyplatystoma capapretum oriundos dos desembarques pesqueiros realizados em nove regiões inseridas em calhas de rios de águas brancas da Amazônia brasileira, foram caracterizados geneticamente por meio do seqüenciamento da região controle do DNA mitocondrial.
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]