Wnt Ligand/Frizzled 2 Receptor Signaling Regulates Tube Shape and Branch-Point Formation in the Lung Through Control of Epithelial Cell Shape

Total Page:16

File Type:pdf, Size:1020Kb

Wnt Ligand/Frizzled 2 Receptor Signaling Regulates Tube Shape and Branch-Point Formation in the Lung Through Control of Epithelial Cell Shape Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape Rachel S. Kadzika, Ethan David Cohenb, Michael P. Morleyc, Kathleen M. Stewartc,d, Min Min Luc, and Edward E. Morriseya,c,d,e,1 Departments of aCell and Developmental Biology and cMedicine, dCardiovascular Institute, and eInstitute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104; and bDivision of Endocrinology, Department of Medicine, University of Rochester, Rochester, NY 14642 Edited* by Brigid L. M. Hogan, Duke University Medical Center, Durham, NC, and approved July 16, 2014 (received for review April 11, 2014) Changing the morphology of a simple epithelial tube to form a apical expression of phospho-myosin light chain 2 (pMLC2) in- highly ramified branching network requires changes in cell behavior dicative of the decreased Rho signaling that is required for that lead to tissue-wide changes in organ shape. How epithelial cells thickening of the lung epithelium before new branch formation. in branched organs modulate their shape and behavior to promote Importantly, activation of Rho signaling can rescue the loss of bending and sculpting of the epithelial sheet is not well understood, Fzd2 signaling during lung branching morphogenesis. Together, and the mechanisms underlying this process remain obscure. We our data highlight a previously unappreciated mechanism in the show that the Wnt receptor Frizzled 2 (Fzd2) is required for domain formation of branched networks by the control of epithelial cell branch formation during the initial establishment of the respiratory shape through Wnt signaling. tree. Live imaging and transcriptome analysis of lung-branching morphogenesis demonstrate that Fzd2 promotes changes in epi- Results thelial cell length and shape. These changes in cell morphology Loss of Fzd2 in the Lung Epithelium Causes the Formation of Distal deform the developing epithelial tube to generate and maintain new Cysts in the Lung. Fzd2 is a Wnt receptor expressed at high levels domain branches. Fzd2 controls branch formation and the shape in the developing lung epithelium and has been implicated in of the epithelial tube by regulating Rho signaling and by the regulating epithelial differentiation downstream of Gata6 (6). To localization of phospho-myosin light chain 2, in turn controlling assess further the role of Fzd2 in the developing lung, we gen- flox/flox the changes in the shape of epithelial cells during morphogen- erated mice carrying the Fzd2 allele and crossed these mice cre into the Shh allele (7) to delete Fzd2 specifically in the lung esis. This study demonstrates the importance of Wnt/Fzd2 cre flox/flox signaling in promoting and maintaining changes in epithelial cell epithelium (Fig. S1). Fzd2 expression in the Shh :Fzd2 shape that affect development of a branching network. mutants is reduced efficiently in the lung epithelium by embryonic day (E) 12.5, as observed by in situ hybridization and quantitative real-time PCR (qPCR) (Fig. 1 A and B and Fig. S1B). Although evelopment of many epithelial-derived organs requires a pro- cre flox/flox initial lung formation occurs in Shh :Fzd2 mutants, by cess of bending, folding, and reorganization of a primitive D E14.5 mutant lungs contain multiple large cysts in the distal epithelial sheet or tube to generate a functional 3D organ. The regions of the lung (Fig. 1 C and D) that persist into adulthood. mammalian lung is derived from a simple endoderm tube through In normal lung development, new lateral branches are add- a complex series of morphological changes that generates the ed along a main founder branch in a stereotyped pattern in highly arborized airways required for postnatal respiration. In humans, the first 16 generations of branching are thought to be genetically hard-wired; this notion is supported by work on mouse Significance lungs showing that the branching pattern across multiple mouse strains is highly reproducible (1, 2). Despite such insight, little is We generated a conditional mouse allele for the Wnt receptor understood about the genetic control of the molecular and cellular Fzd2 and used it to assess the role of Fzd2-mediated Wnt sig- mechanisms underlying branching morphogenesis in the lung. naling in the lung. Loss of Fzd2 specifically in the developing The epithelial cells that line tubular branching networks can lung epithelium results in defects in domain branch-point for- be thought of as a large planar epithelial surface that must undergo mation which alter the primary branching program of the lung. changes in cell morphology in specific subregions for proper branch We show that Fzd2 is required to sculpt the developing epi- formation to occur. Several pathways, including the Wnt signaling thelium in the lung through activation of the small GTPase RhoA pathway, have been implicated in regulating epithelial cell behavior and control of epithelial cell shape. These results reveal the in a plane. Although the canonical Wnt signaling pathway regulates importance of Wnt/RhoA signaling in altering the shape of the gene expression through nuclear translocation of β-catenin and its developing epithelium of branched organs such as the lung. subsequent coactivation of LEF/TCF transcription factors, non- Such studies highlight the interconnectedness of signaling canonical Wnt signaling involves a less well-defined signaling pathways during the formation of a branched network. network that leads to alterations in epithelial cell shape and cyto- skeletal structure. Noncanonical Wnt signaling is known to regulate Author contributions: R.S.K., M.P.M., and E.E.M. designed research; R.S.K., E.D.C., K.M.S., changes in epithelial cell shape in convergent–extension movements M.M.L., and E.E.M. performed research; R.S.K., E.D.C., and M.M.L. contributed new reagents/ (3, 4) and bending of the neural plate (5), but whether this pathway analytic tools; R.S.K., M.P.M., K.M.S., and E.E.M. analyzed data; and R.S.K. and E.E.M. wrote regulates the development of branched organs is unknown. the paper. In the current study we show that the Wnt receptor Frizzled 2 The authors declare no conflict of interest. (Fzd2) plays a key role in regulating the epithelial cell behavior *This Direct Submission article had a prearranged editor. and tube morphology necessary for formation of new branch Data deposition: The microarray data reported in this article have been deposited in the points during airway morphogenesis. Fzd2 is essential for regu- Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. lating changes in epithelial cell shape and cell lengthening along GSE49370). the apical–basal axis which we show are critical for formation of 1To whom correspondence should be addressed. Email: [email protected]. new domain branch points and maintaining proper airway tube This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. shape in the developing lung. Loss of Fzd2 leads to decreased 1073/pnas.1406639111/-/DCSupplemental. 12444–12449 | PNAS | August 26, 2014 | vol. 111 | no. 34 www.pnas.org/cgi/doi/10.1073/pnas.1406639111 Downloaded by guest on September 29, 2021 E12.5 E14.5 branch formation during the establishment of the respiratory tree, we also observe defects in later branching modalities, including cre fl/fl Fzd2 In Situ Control Shh ; Fzd2 planar bifurcation, which likely contribute to cyst formation. A C Loss of Fzd2 Does Not Change Wnt/β-Catenin Signaling Significantly in Lung Epithelium. Fzd2 activates both β-catenin–dependent and –independent Wnt signaling, depending on cellular context (8–11). Therefore we evaluated the effect of loss of Fzd2 expression Control on canonical Wnt signaling in vivo using two Wnt reporter mouse cre B D lines and qPCR for endogenous Wnt target genes (12, 13). Shh : flox/flox Fzd2 :TOPGAL mutant lungs did not exhibit an appreciable change in LacZ histochemical staining compared with control lungs (Fig. S3 A–F). qPCR for known Wnt targets in the developing lung did not reveal a significant change in canonical Wnt signaling ac- Shhcre; Fzd2fl/fl tivity (Fig. S3G). These findings are consistent with a previously 36 somites 44 somites 48 somites 54 somites 60 somites reported global Fzd2-null allele that demonstrated that the loss of Fzd2 does not significantly affect canonical Wnt/β-catenin signaling EFGHI (8). Previous work established a role for Wnt/β-catenin signaling in regulating cell-fate decisions in the lung during development (14– control 16). However, we do not observe any change in proximal-to- E-cadherin Vimentin distal patterning or cell differentiation with the loss of Fzd2 (Fig. fl/fl J KMNL S4). These data suggest that Wnt/Fzd2 signaling has a previously unappreciated role in regulating morphological changes inde- :Fzd2 cre pendent of Wnt/β-catenin signaling or cell specification. E-cadherin Shh Vimentin O i. 42-44 somites ii. 46-48 somites iii. 52-54 somites iv. 57-60 somites Loss of Fzd2 Disrupts the Molecular Branching Program of the Lung. 1 To assess further the molecular changes that underlie the br- 1 1 1 anching defects described above, we determined the changes in cre flox/flox 2 2 the transcriptome of Shh :Fzd2 mutant lungs at E12.5. control 3 2 3 These data revealed changes in signaling factors known to reg- 4 ulate lung branching morphogenesis, including Fgf10, Bmp4, Fgfr2, and Shh (Fig. 2 A and B and Dataset S1). Previous work fl/fl 1 1 1 has proposed a model for lung branch formation that includes 1 2 2 C :Fzd2 roles for Fgf10 signaling as well as Bmp4 and Shh (Fig. 2 ) (17, Left Lobe Domain Branches cre 2 18). This model describes a role for Fgf10 in establishing the site 3 Shh E-cadherin of new bud formation, although recent work has questioned Vimentin whether focal Fgf10 expression is required for proper branching Fig.
Recommended publications
  • Drosophila Ric-8 Interacts with the Gα12/13 Subunit, Concertina, During Activation of the Folded Gastrulation Pathway
    M BoC | ARTICLE Drosophila Ric-8 interacts with the Gα12/13 subunit, Concertina, during activation of the Folded gastrulation pathway Kimberly A. Petersa and Stephen L. Rogersa,b,c aDepartment of Biology and bCarolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; cLineberger Comprehensive Cancer Center, Chapel Hill, NC 27514 ABSTRACT Heterotrimeric G proteins, composed of α, β, and γ subunits, are activated by Monitoring Editor exchange of GDP for GTP on the Gα subunit. Canonically, Gα is stimulated by the guanine- Denise Montell nucleotide exchange factor (GEF) activity of ligand-bound G protein–coupled receptors. University of California, Santa Barbara However, Gα subunits may also be activated in a noncanonical manner by members of the Ric-8 family, cytoplasmic proteins that also act as GEFs for Gα subunits. We used a signaling Received: Nov 15, 2012 pathway active during Drosophila gastrulation as a model system to study Ric-8/Gα interac- Revised: Jul 18, 2013 Accepted: Aug 28, 2013 tions. A component of this pathway, the Drosophila Gα12/13 subunit, Concertina (Cta), is necessary to trigger actomyosin contractility during gastrulation events. Ric-8 mutants ex- hibit similar gastrulation defects to Cta mutants. Here we use a novel tissue culture system to study a signaling pathway that controls cytoskeletal rearrangements necessary for cellular morphogenesis. We show that Ric-8 regulates this pathway through physical interaction with Cta and preferentially interacts with inactive Cta and directs its localization within the cell. We also use this system to conduct a structure–function analysis of Ric-8 and identify key residues required for both Cta interaction and cellular contractility.
    [Show full text]
  • The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination
    | FLYBOOK DEVELOPMENT AND GROWTH The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination Adam C. Martin1 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 ORCID ID: 0000-0001-8060-2607 (A.C.M.) ABSTRACT A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time.
    [Show full text]
  • Apical Sarcomere-Like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells
    Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Coravos, Jonathan S., and Adam C. Martin. “Apical Sarcomere- Like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells.” Developmental Cell 39, no. 3 (November 2016): 346–358. As Published http://dx.doi.org/10.1016/J.DEVCEL.2016.09.023 Publisher Elsevier BV Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/116723 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Dev Cell Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 November 07. Published in final edited form as: Dev Cell. 2016 November 7; 39(3): 346–358. doi:10.1016/j.devcel.2016.09.023. Apical sarcomere-like actomyosin contracts nonmuscle Drosophila epithelial cells Jonathan S. Coravos1 and Adam C. Martin1 1 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA Summary Actomyosin networks generate contractile force that changes cell and tissue shape. In muscle cells, actin filaments and myosin II appear in a polarized structure called a sarcomere, where myosin II is localized in the center. Nonmuscle cortical actomyosin networks are thought to contract when nonmuscle myosin II (myosin) is activated throughout a mixed-polarity actin network. Here, we identified a mutant version of the myosin-activating kinase, ROCK, that localizes diffusely, rather than centrally, in epithelial cell apices. Surprisingly, this mutant inhibits constriction, suggesting that centrally localized apical ROCK/myosin activity promotes contraction.
    [Show full text]
  • Volume Conservation Principle Involved in Cell Lengthening and Nucleus Movement During Tissue Morphogenesis
    Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis Michael A. Gelbarta,b, Bing Hec, Adam C. Martinc,d, Stephan Y. Thibergea, Eric F. Wieschausc, and Matthias Kaschubea,e,1 aLewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544; bGraduate Program in Biophysics, Harvard University, Boston, MA 02115; cDepartment of Molecular Biology, The Howard Hughes Medical Institute, Moffett Laboratory 435, Princeton University, Princeton, NJ 08544; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and eFrankfurt Institute for Advanced Studies, Faculty of Computer Science and Mathematics, Goethe University, D-60438 Frankfurt am Main, Germany Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved October 8, 2012 (received for review March 30, 2012) Tissue morphogenesis is the process in which coordinated move- the basal end, resulting in cells of stereotypical columnar shape ments and shape changes of large numbers of cells form tissues, (Fig. 1B, Left). When gastrulation starts, individual cells constrict organs, and the internal body structure. Understanding morphoge- at their apical end and undergo elongation. Cells then shorten and netic movements requires precise measurements of whole-cell shape widen their basal ends, transforming shapes from columnar to changes over time. Tissue folding and invagination are thought to be wedge-like (6, 10–12) (Fig. 1B, Right). Cell nuclei are initially close facilitated by apical constriction, but the mechanism by which to the apical surface but move basally during the early phase of changes near the apical cell surface affect changes along the entire furrow formation (6, 13).
    [Show full text]
  • GEF-H1 Functions in Apical Constriction and Cell Intercalations
    ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 2542–2553 doi:10.1242/jcs.146811 RESEARCH ARTICLE GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure Keiji Itoh*, Olga Ossipova* and Sergei Y. Sokol` ABSTRACT 2013). Taken together, these cell behaviors are the main contributors to morphogenetic movements underlying vertebrate Rho family GTPases regulate many morphogenetic processes neurulation. during vertebrate development including neural tube closure. Here One of the crucial regulators of neural tube closure is non- we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific muscle myosin II (Rolo et al., 2009; Tullio et al., 2001). guanine nucleotide exchange factor that functions in neurulation Both intercalatory and constricting cell behaviors require in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 reorganization of many cytoskeletal components and involve resulted in severe neural tube defects, which were rescued by dynamic changes in myosin II localization and activity (Lecuit GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different et al., 2011; Rauzi et al., 2010; Vicente-Manzanares et al., 2009). developmental stages revealed abnormal cell intercalation and Myosin II controls the contractile force by binding to, and sliding apical constriction, suggesting that GEF-H1 regulates these cell along, actin filaments. Myosin II has also been implicated in behaviors. Molecular marker analysis documented defects in a variety of cellular processes – such as cell junction stability, myosin II light chain (MLC) phosphorylation, Rab11 and F-actin nuclear movement, apical–basal protein targeting – yet there is accumulation in GEF-H1-depleted cells.
    [Show full text]
  • Cell Non-Autonomy Amplifies Disruption of Neurulation by Mosaic
    ARTICLE https://doi.org/10.1038/s41467-021-21372-4 OPEN Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice ✉ Gabriel L. Galea 1,2 , Eirini Maniou 1, Timothy J. Edwards1, Abigail R. Marshall1, Ioakeim Ampartzidis 1, Nicholas D. E. Greene 1 & Andrew J. Copp 1 Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we 1234567890():,; report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neigh- bours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves con- tinue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects. 1 Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK. 2 Comparative Bioveterinary Sciences, Royal Veterinary College, ✉ London, UK. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1159 | https://doi.org/10.1038/s41467-021-21372-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21372-4 eural tube (NT) defects such as spina bifida continue to as Xenopus neuroepithelium23–26.
    [Show full text]
  • Pax6-Dependent Shroom3 Expression Regulates Apical Constriction During Lens Placode Invagination Timothy F
    RESEARCH ARTICLE 405 Development 137, 405-415 (2010) doi:10.1242/dev.045369 © 2010. Published by The Company of Biologists Ltd Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination Timothy F. Plageman, Jr1,2, Mei-I Chung3, Ming Lou4, April N. Smith1,2, Jeffrey D. Hildebrand5, John B. Wallingford3,6 and Richard A. Lang1,2,7,8,* SUMMARY Embryonic development requires a complex series of relative cellular movements and shape changes that are generally referred to as morphogenesis. Although some of the mechanisms underlying morphogenesis have been identified, the process is still poorly understood. Here, we address mechanisms of epithelial morphogenesis using the vertebrate lens as a model system. We show that the apical constriction of lens epithelial cells that accompanies invagination of the lens placode is dependent on Shroom3, a molecule previously associated with apical constriction during morphogenesis of the neural plate. We show that Shroom3 is required for the apical localization of F-actin and myosin II, both crucial components of the contractile complexes required for apical constriction, and for the apical localization of Vasp, a Mena family protein with F-actin anti-capping function that is also required for morphogenesis. Finally, we show that the expression of Shroom3 is dependent on the crucial lens-induction transcription factor Pax6. This provides a previously missing link between lens-induction pathways and the morphogenesis machinery and partly explains the absence of lens morphogenesis in Pax6-deficient mutants. KEY WORDS: Mena (Enah), Pax6, Shroom3, Vasp, Lens, Morphogenesis, Mouse, Chicken, Xenopus INTRODUCTION that contrasts, for example, with lens placode conditional deletion Embryonic development requires complex events in morphogenesis of Sox2, in which invagination is still initiated (Smith et al., 2009).
    [Show full text]
  • Gastrulation: Partaking of the Bottle Dispatch
    Current Biology, Vol. 13, R223–R225, March 18, 2003, ©2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0960-9822(03)00155-6 Gastrulation: PARtaking of the Bottle Dispatch Aaron P. Putzke and Joel H. Rothman constriction of their apical ends, resulting in bending of the sheet and their inward movement toward the opposite (basal) surface. The mechanics of such apical Gastrulation in C. elegans embryos involves constriction was modeled over 55 years ago [8] with ingression of individual cells, but is driven by apical brass bars and rubber bands representing a layer of constriction of the kind that promotes migration of epithelial cells: by changing the tension on one side of epithelial cell sheets. Recent work shows that PAR the layer, the sheet would buckle inward, thus mimick- proteins, known for their role in polarization and ing ingression. unequal cell division, are also associated with the Ingression by apical constriction may be energeti- polarization that establishes this apical constriction. cally more favorable than other means of gap closure, such as the purse-string model. A study using com- puter algorithms to mimic gastrulating embryos showed How poor are they who have not gastrulation! that, when a cell constricts apically, it propagates a What wound did ever heal but by ingression? wave through the surrounding sheet of cells, causing (apologies to William Shakespeare) an inward buckling [9]. Morphological support for apical constriction in a developing organism came from the observation of bottle cells, for example during We all begin as a cluster of rather featureless cells; our primary invagination of epithelial cells in sea urchins final forms are sculpted into specialized tissue layers [1], in which bottle cells have been shown to be essen- which achieve their final state by the concerted move- tial for gastrulation [2].
    [Show full text]
  • Endocytosis Is Required for Efficient Apical Constriction During Xenopus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 20, 253–258, February 9, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.12.021 Report Endocytosis Is Required for Efficient Apical Constriction during Xenopus Gastrulation Jen-Yi Lee1,* and Richard M. Harland1,* To determine where endosomes traffic in bottle cells, we 1Department of Molecular and Cell Biology, labeled stage 9 embryos with biotin, quenched the reaction, University of California, Berkeley, Berkeley, CA 94720, USA and fixed the embryos at 30 min intervals (‘‘chase’’). As cells underwent AC, the number of endosomes also increased, strengthening the correlation between endocytosis and AC. Summary Endosomes trafficked away from the apical membrane, and some vesicles colocalized with the basolateral membrane Coordinated apical constriction (AC) in epithelial sheets (Figure 1D). drives tissue invagination [1, 2] and is required for diverse Previously, we showed that intact but not dynamic microtu- morphogenetic movements such as gastrulation [3], neuru- bules were required for AC [7]. If intact microtubules function as lation [4, 5], and organogenesis [6]. We showed previously tracks for endosomes, then nocodazole treatment should that actomyosin contractility drives AC in Xenopus laevis prevent endocytosis, whereas taxol treatment should not. bottle cells [7]; however, it remained unclear whether it Indeed, in nocodazole-treated embryos, endosomes remained does so in concert with other processes. Here we report at the apical membrane (see Figure S1 available online). In that endocytosis-driven membrane remodeling is required contrast, taxol-treated embryos exhibited internalized vesicles for efficient AC.
    [Show full text]
  • Sonic Hedgehog Signaling Directs Patterned Cell Remodeling During
    RESEARCH ARTICLE Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure Eric R Brooks1, Mohammed Tarek Islam1, Kathryn V Anderson2, Jennifer A Zallen1* 1Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States; 2Developmental Biology Program, Sloan Kettering Institute, New York, United States Abstract Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here, we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are flat with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain. *For correspondence: Introduction [email protected] Neural tube closure defects are among the most common structural birth defects, occurring in 1 in 1000 pregnancies worldwide (Wallingford et al., 2013; Zaganjor et al., 2016). During develop- Competing interests: The ment, neuroepithelial cells undergo extensive remodeling to transform a flat sheet into a fully closed authors declare that no tube that gives rise to the brain and spinal cord of the animal.
    [Show full text]
  • Rho Signaling Pathway and Apical Constriction in the Early Lens Placode
    ' 2011 Wiley-Liss, Inc. genesis 00:1–12 (2011) ARTICLE Rho Signaling Pathway and Apical Constriction in the Early Lens Placode Ricardo Moraes Borges,1 Marcelo Lazzaron Lamers,2 Fabio Luis Forti,3 Marinilce Fagundes dos Santos,1 and Chao Yun Irene Yan1* 1Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sa˜ o Paulo, Sa˜ o Paulo, SP, Brazil 2Departamento de Cieˆ ncias Morfolo´ gicas do Instituto de Cieˆ ncias Ba´ sicas da Sau´ de, Universidade Federal do Rio Grande do Sul, Brazil 3Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil Received 18 October 2010; Revised 5 January 2011; Accepted 16 January 2011 Summary: Epithelial invagination in many model sys- a classical experimental paradigm in developmental tems is driven by apical cell constriction, mediated by biology. The study of its development has contributed actin and myosin II contraction regulated by GTPase to our understanding of various issues pertinent to the activity. Here we investigate apical constriction during field. In particular, the various morphological changes chick lens placode invagination. Inhibition of actin poly- that the lens placode undergoes at different stages of de- merization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify velopment illustrate its usefulness as a model system for if lens placode invaginate through apical constriction, embryonic morphogenesis. we analyzed the role of Rho-ROCK pathway. Rho In brief, prior to the appearance of the placodes, GTPases expression at the apical portion of the lens the cells of the head ectoderm are cuboidal.
    [Show full text]
  • Cadherin Preserves Cohesion Across Involuting Tissues During C. Elegans
    RESEARCH ARTICLE Cadherin preserves cohesion across involuting tissues during C. elegans neurulation Kristopher M Barnes1,2, Li Fan1†, Mark W Moyle3, Christopher A Brittin1, Yichi Xu1, Daniel A Colo´ n-Ramos3,4, Anthony Santella1,5, Zhirong Bao1* 1Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States; 2Graduate Program in Neuroscience, Weill Cornell Medicine, New York, United States; 3Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, United States; 4Instituto de Neurobiologı´a, Recinto de Ciencias Me´dicas, Universidad de Puerto Rico, San Juan, United States; 5Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, United States Abstract The internalization of the central nervous system, termed neurulation in vertebrates, is a critical step in embryogenesis. Open questions remain regarding how force propels coordinated tissue movement during the process, and little is known as to how internalization happens in invertebrates. We show that in C. elegans morphogenesis, apical constriction in the retracting pharynx drives involution of the adjacent neuroectoderm. HMR-1/cadherin mediates this process *For correspondence: via inter-tissue attachment, as well as cohesion within the neuroectoderm. Our results demonstrate [email protected] that HMR-1 is capable of mediating embryo-wide reorganization driven by a centrally located force generator, and indicate a non-canonical use of cadherin on the basal side of an epithelium that may Present address: †Helen and apply to vertebrate neurulation. Additionally, we highlight shared morphology and gene expression Robert Appel Alzheimer’s in tissues driving involution, which suggests that neuroectoderm involution in C. elegans is Disease Research Institute, Weill Cornell Medicine, New York, potentially homologous with vertebrate neurulation and thus may help elucidate the evolutionary United States origin of the brain.
    [Show full text]