Rho Signaling Pathway and Apical Constriction in the Early Lens Placode

Total Page:16

File Type:pdf, Size:1020Kb

Rho Signaling Pathway and Apical Constriction in the Early Lens Placode ' 2011 Wiley-Liss, Inc. genesis 00:1–12 (2011) ARTICLE Rho Signaling Pathway and Apical Constriction in the Early Lens Placode Ricardo Moraes Borges,1 Marcelo Lazzaron Lamers,2 Fabio Luis Forti,3 Marinilce Fagundes dos Santos,1 and Chao Yun Irene Yan1* 1Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sa˜ o Paulo, Sa˜ o Paulo, SP, Brazil 2Departamento de Cieˆ ncias Morfolo´ gicas do Instituto de Cieˆ ncias Ba´ sicas da Sau´ de, Universidade Federal do Rio Grande do Sul, Brazil 3Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil Received 18 October 2010; Revised 5 January 2011; Accepted 16 January 2011 Summary: Epithelial invagination in many model sys- a classical experimental paradigm in developmental tems is driven by apical cell constriction, mediated by biology. The study of its development has contributed actin and myosin II contraction regulated by GTPase to our understanding of various issues pertinent to the activity. Here we investigate apical constriction during field. In particular, the various morphological changes chick lens placode invagination. Inhibition of actin poly- that the lens placode undergoes at different stages of de- merization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify velopment illustrate its usefulness as a model system for if lens placode invaginate through apical constriction, embryonic morphogenesis. we analyzed the role of Rho-ROCK pathway. Rho In brief, prior to the appearance of the placodes, GTPases expression at the apical portion of the lens the cells of the head ectoderm are cuboidal. After placode occurs with the same dynamics as that of the the molecular events that lead to the induction of the cytoskeleton. Overexpression of the pan-Rho inhibitor lens placode (reviewed in Donner et al., 2006), the C3 exotoxin abolished invagination and had a strong cells elongate and the placode can be identified as a effect on apical myosin II enrichment and a mild effect flat thickened pseudo-stratified columnar structure in on apical actin localization. In contrast, pharmacologi- the head ectoderm overlying the optic vesicle. There- cal inhibition of ROCK activity interfered significantly after, the cell apical/basal surface ratio decreases and with apical enrichment of both actin and myosin. These the cells assume a conical shape. This results in the results suggest that apical constriction in lens invagina- tion involves ROCK but apical concentration of actin inward bending of placode, forming an initial shallow and myosin are regulated through different pathways concavity which deepens into the lens pit as invagina- upstream of ROCK. genesis 00:1–12, 2011. VC 2011 tion progresses (Schook, 1980b). The pit expands dor- Wiley-Liss, Inc. sal-ventrally so as to involve the whole placode in an Key words: lens placode; epithelial Invagination; apical cell constriction; Rho GTPase; morphogenesis Additional Supporting Information may be found in the online version of this article. * Correspondence to: Chao Yun Irene Yan, Departamento de Biologia Celular e do Desenvolvimento, Instituto de Cieˆncias Biome´dicas, Universi- INTRODUCTION dade de Sa˜o Paulo, Sa˜o Paulo, SP 05508-000, Brazil. E-mail: [email protected] The developing eye is privileged amongst all the other Contract grant sponsor: FAPESP; Contract grant number: 2007/57450-7; embryonic tissues with an anatomical localization that Contract grant sponsor: CNPq; Contract grant number: 47.5752/06-6; Contract grant sponsor: FAPESP facilitates its experimental manipulation and imaging, Published online in Wiley Online Library (wileyonlinelibrary.com). properties that have contributed to its establishment as DOI: 10.1002/dvg.20723 2 BORGES ET AL. invaginating event. After the ingression of the whole lar to previously-identified AC-driven epithelial morpho- placode toward the underlying optic cup, the edges genesis, the distribution of both apical actin and myosin fuse and detach from the surface ectoderm, forming in lens placode also require ROCK activity. However, the lens vesicle (Schook, 1980b). further investigation of the signaling involved in the reg- A variety of mechanisms have been suggested to con- ulation of AC indicates that actin and myosin II are dif- tribute to the initial inward buckling of the placode, such ferentially regulated by components upstream to as differential cell proliferation or death, tissue interac- ROCK. Accumulation of apical myosin II is abnormal tion, planar pressure derived from lateral growth and api- with C3-exotoxin-mediated inactivation of RhoGTPases, cal constriction (Hendrix et al., 1993; Plageman et al., whereas actin is unaffected by the same treatment. 2010; Schook, 1980a; Wrenn and Wessels, 1969). Apical constriction (AC) is an evolutionary conserved phenom- ena that has been extensively characterized in a variety of RESULTS epithelial bending events in metazoan embryogenesis, such as in cell shape changes during sea-urchin, Drosoph- Actin Filaments Colocalize With Myosin II ila and Xenopus gastrulation, vertebrate neural plate and at Apical Portion Prior to and During placodal bending (Barrett et al., 1997; Beane et al., 2006; Lens Placode Invagination Dawes-Hoang et al., 2005; Fox and Peifer, 2007; Kinosh- Reduction of apical surface through myosin II-medi- ita et al., 2008; Lee and Harland, 2007; Nikolaidou and ated contraction of apical actin network is associated Barrett, 2004; Plageman et al., 2010; Sai and Ladher, with specific changes in cytoskeletal architecture (Bau- 2008). The main driving force of AC is the contraction of mann, 2004; Dawes-Hoang et al., 2005; Hildebrand apically localized acto-myosin cytoskeleton. The mechani- 2005): First, actin and myosin accumulate in the apical cal force generated drives reduction of the apical surface region where reduction of cell surface area will occur. area and converts cuboidal/columnar cells into wedge- Specifically in AC-driven events, this accumulation pre- shaped cells. The coordinated occurrence of this single cedes onset of invagination. Finally, inhibition of actin- cell-shape change across the planar epithelium cell layer, myosin function interferes with epithelial invagination together with the increased intercellular adhesion con- by preventing apical constriction. ferred by the enrichment of adhesive junctions, results in To address whether chick lens placode goes through the bending of the flat epithelium. the same process during its invagination, we first inves- The molecular mechanisms that regulate apical con- tigated the dynamics of actomyosin cytoskeleton local- striction have been extensively studied in Drosophila ization prior to and during lens placode invagination. In mesodermal invagination (Lecuit and Lenne, 2007) and particular, we analyzed three different stages of lens pla- in vertebrate neural tube closure (Haigo et al., 2003; code morphogenesis: pre-placodal ectoderm, early lens Nishimura and Takeishi, 2008, Hildebrand and Soriano, placode prior to invagination and invaginating placode. 1999). In the former, the future mesoderm invaginates Pre-placodal cells are cuboidal, morphologically indis- and detaches from the ventral blastoderm epithelia. This tinguishable from the surrounding ectoderm and do not process is initiated with the binding of the secreted present a clear elongated apico-basal polarity (Byers and ligand Fog to its receptor Concertina, which in turn acti- Porter, 1964; Fig. 1). In contrast, the early placode is a vates Rho1/RhoA through RhoGEF2 (Barrett et al., 1997; prominently thickened region composed of a single Costa et al., 1994). Rho1/RhoA then activates the Rho- layer of pseudostratified columnar cells. Thereafter, the dependent kinase Drok/ROCK, which phosphorylates placode initiates the process of invagination. Morpho- and initiates myosin II contractile activity. Inhibition of logically this can be identified by an initial inward bend- Drok/ROCK activity interferes with myosin II recruit- ing step which forms a central dimple. ment to the apical region, and consequently abolishes Pre-placode ectoderm cells present both F-actin and mesodermal invagination (Dawes-Hoang et al., 2005; myosin II homogeneously distributed at the baso-lateral Nikolaidou and Barrett, 2004; Pilot and Lecuit, 2005). and apical domains (Fig. 1a–c). In the early placode, Apical constriction in vertebrates also depends on labeling for actin at the apical side is significantly ROCK (Haigo et al., 2003; Kinoshita et al., 2008). Inhi- increased relative to the basal signal. This increase was bition of ROCK activity reduces the apical levels of detectable prior to invagination (Fig. 1d–f), persisted at phosphorylated myosin II and impairs AC in avian neu- the initial bending step (Fig. 1g–i) and also throughout ral tube and MDCK kidney epithelial cell line (Hilde- its invagination (data not shown). In contrast, in the brand, 2005; Kinoshita et al., 2008; Nishimura and Take- ectoderm that surrounds the placode, which does not ichi, 2008). Here, we confirm that apical constriction invaginate, the pattern of F-actin and myosin II staining contributes toward the initial bending of the chick lens remained similar to that of pre-placode ectoderm and placode. Moreover, we show that GTPases play an im- did not present apical accumulation of contractile ele- portant role in the proper placement of apical actin and ments in any of the stages analyzed (Fig. 1j–l). Quantifi- myosin prior to AC in this experimental
Recommended publications
  • Drosophila Ric-8 Interacts with the Gα12/13 Subunit, Concertina, During Activation of the Folded Gastrulation Pathway
    M BoC | ARTICLE Drosophila Ric-8 interacts with the Gα12/13 subunit, Concertina, during activation of the Folded gastrulation pathway Kimberly A. Petersa and Stephen L. Rogersa,b,c aDepartment of Biology and bCarolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; cLineberger Comprehensive Cancer Center, Chapel Hill, NC 27514 ABSTRACT Heterotrimeric G proteins, composed of α, β, and γ subunits, are activated by Monitoring Editor exchange of GDP for GTP on the Gα subunit. Canonically, Gα is stimulated by the guanine- Denise Montell nucleotide exchange factor (GEF) activity of ligand-bound G protein–coupled receptors. University of California, Santa Barbara However, Gα subunits may also be activated in a noncanonical manner by members of the Ric-8 family, cytoplasmic proteins that also act as GEFs for Gα subunits. We used a signaling Received: Nov 15, 2012 pathway active during Drosophila gastrulation as a model system to study Ric-8/Gα interac- Revised: Jul 18, 2013 Accepted: Aug 28, 2013 tions. A component of this pathway, the Drosophila Gα12/13 subunit, Concertina (Cta), is necessary to trigger actomyosin contractility during gastrulation events. Ric-8 mutants ex- hibit similar gastrulation defects to Cta mutants. Here we use a novel tissue culture system to study a signaling pathway that controls cytoskeletal rearrangements necessary for cellular morphogenesis. We show that Ric-8 regulates this pathway through physical interaction with Cta and preferentially interacts with inactive Cta and directs its localization within the cell. We also use this system to conduct a structure–function analysis of Ric-8 and identify key residues required for both Cta interaction and cellular contractility.
    [Show full text]
  • The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination
    | FLYBOOK DEVELOPMENT AND GROWTH The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination Adam C. Martin1 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 ORCID ID: 0000-0001-8060-2607 (A.C.M.) ABSTRACT A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time.
    [Show full text]
  • Apical Sarcomere-Like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells
    Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Coravos, Jonathan S., and Adam C. Martin. “Apical Sarcomere- Like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells.” Developmental Cell 39, no. 3 (November 2016): 346–358. As Published http://dx.doi.org/10.1016/J.DEVCEL.2016.09.023 Publisher Elsevier BV Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/116723 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Dev Cell Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 November 07. Published in final edited form as: Dev Cell. 2016 November 7; 39(3): 346–358. doi:10.1016/j.devcel.2016.09.023. Apical sarcomere-like actomyosin contracts nonmuscle Drosophila epithelial cells Jonathan S. Coravos1 and Adam C. Martin1 1 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA Summary Actomyosin networks generate contractile force that changes cell and tissue shape. In muscle cells, actin filaments and myosin II appear in a polarized structure called a sarcomere, where myosin II is localized in the center. Nonmuscle cortical actomyosin networks are thought to contract when nonmuscle myosin II (myosin) is activated throughout a mixed-polarity actin network. Here, we identified a mutant version of the myosin-activating kinase, ROCK, that localizes diffusely, rather than centrally, in epithelial cell apices. Surprisingly, this mutant inhibits constriction, suggesting that centrally localized apical ROCK/myosin activity promotes contraction.
    [Show full text]
  • Volume Conservation Principle Involved in Cell Lengthening and Nucleus Movement During Tissue Morphogenesis
    Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis Michael A. Gelbarta,b, Bing Hec, Adam C. Martinc,d, Stephan Y. Thibergea, Eric F. Wieschausc, and Matthias Kaschubea,e,1 aLewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544; bGraduate Program in Biophysics, Harvard University, Boston, MA 02115; cDepartment of Molecular Biology, The Howard Hughes Medical Institute, Moffett Laboratory 435, Princeton University, Princeton, NJ 08544; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and eFrankfurt Institute for Advanced Studies, Faculty of Computer Science and Mathematics, Goethe University, D-60438 Frankfurt am Main, Germany Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved October 8, 2012 (received for review March 30, 2012) Tissue morphogenesis is the process in which coordinated move- the basal end, resulting in cells of stereotypical columnar shape ments and shape changes of large numbers of cells form tissues, (Fig. 1B, Left). When gastrulation starts, individual cells constrict organs, and the internal body structure. Understanding morphoge- at their apical end and undergo elongation. Cells then shorten and netic movements requires precise measurements of whole-cell shape widen their basal ends, transforming shapes from columnar to changes over time. Tissue folding and invagination are thought to be wedge-like (6, 10–12) (Fig. 1B, Right). Cell nuclei are initially close facilitated by apical constriction, but the mechanism by which to the apical surface but move basally during the early phase of changes near the apical cell surface affect changes along the entire furrow formation (6, 13).
    [Show full text]
  • GEF-H1 Functions in Apical Constriction and Cell Intercalations
    ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 2542–2553 doi:10.1242/jcs.146811 RESEARCH ARTICLE GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure Keiji Itoh*, Olga Ossipova* and Sergei Y. Sokol` ABSTRACT 2013). Taken together, these cell behaviors are the main contributors to morphogenetic movements underlying vertebrate Rho family GTPases regulate many morphogenetic processes neurulation. during vertebrate development including neural tube closure. Here One of the crucial regulators of neural tube closure is non- we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific muscle myosin II (Rolo et al., 2009; Tullio et al., 2001). guanine nucleotide exchange factor that functions in neurulation Both intercalatory and constricting cell behaviors require in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 reorganization of many cytoskeletal components and involve resulted in severe neural tube defects, which were rescued by dynamic changes in myosin II localization and activity (Lecuit GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different et al., 2011; Rauzi et al., 2010; Vicente-Manzanares et al., 2009). developmental stages revealed abnormal cell intercalation and Myosin II controls the contractile force by binding to, and sliding apical constriction, suggesting that GEF-H1 regulates these cell along, actin filaments. Myosin II has also been implicated in behaviors. Molecular marker analysis documented defects in a variety of cellular processes – such as cell junction stability, myosin II light chain (MLC) phosphorylation, Rab11 and F-actin nuclear movement, apical–basal protein targeting – yet there is accumulation in GEF-H1-depleted cells.
    [Show full text]
  • Cell Non-Autonomy Amplifies Disruption of Neurulation by Mosaic
    ARTICLE https://doi.org/10.1038/s41467-021-21372-4 OPEN Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice ✉ Gabriel L. Galea 1,2 , Eirini Maniou 1, Timothy J. Edwards1, Abigail R. Marshall1, Ioakeim Ampartzidis 1, Nicholas D. E. Greene 1 & Andrew J. Copp 1 Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we 1234567890():,; report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neigh- bours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves con- tinue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects. 1 Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK. 2 Comparative Bioveterinary Sciences, Royal Veterinary College, ✉ London, UK. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1159 | https://doi.org/10.1038/s41467-021-21372-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21372-4 eural tube (NT) defects such as spina bifida continue to as Xenopus neuroepithelium23–26.
    [Show full text]
  • Pax6-Dependent Shroom3 Expression Regulates Apical Constriction During Lens Placode Invagination Timothy F
    RESEARCH ARTICLE 405 Development 137, 405-415 (2010) doi:10.1242/dev.045369 © 2010. Published by The Company of Biologists Ltd Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination Timothy F. Plageman, Jr1,2, Mei-I Chung3, Ming Lou4, April N. Smith1,2, Jeffrey D. Hildebrand5, John B. Wallingford3,6 and Richard A. Lang1,2,7,8,* SUMMARY Embryonic development requires a complex series of relative cellular movements and shape changes that are generally referred to as morphogenesis. Although some of the mechanisms underlying morphogenesis have been identified, the process is still poorly understood. Here, we address mechanisms of epithelial morphogenesis using the vertebrate lens as a model system. We show that the apical constriction of lens epithelial cells that accompanies invagination of the lens placode is dependent on Shroom3, a molecule previously associated with apical constriction during morphogenesis of the neural plate. We show that Shroom3 is required for the apical localization of F-actin and myosin II, both crucial components of the contractile complexes required for apical constriction, and for the apical localization of Vasp, a Mena family protein with F-actin anti-capping function that is also required for morphogenesis. Finally, we show that the expression of Shroom3 is dependent on the crucial lens-induction transcription factor Pax6. This provides a previously missing link between lens-induction pathways and the morphogenesis machinery and partly explains the absence of lens morphogenesis in Pax6-deficient mutants. KEY WORDS: Mena (Enah), Pax6, Shroom3, Vasp, Lens, Morphogenesis, Mouse, Chicken, Xenopus INTRODUCTION that contrasts, for example, with lens placode conditional deletion Embryonic development requires complex events in morphogenesis of Sox2, in which invagination is still initiated (Smith et al., 2009).
    [Show full text]
  • Gastrulation: Partaking of the Bottle Dispatch
    Current Biology, Vol. 13, R223–R225, March 18, 2003, ©2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0960-9822(03)00155-6 Gastrulation: PARtaking of the Bottle Dispatch Aaron P. Putzke and Joel H. Rothman constriction of their apical ends, resulting in bending of the sheet and their inward movement toward the opposite (basal) surface. The mechanics of such apical Gastrulation in C. elegans embryos involves constriction was modeled over 55 years ago [8] with ingression of individual cells, but is driven by apical brass bars and rubber bands representing a layer of constriction of the kind that promotes migration of epithelial cells: by changing the tension on one side of epithelial cell sheets. Recent work shows that PAR the layer, the sheet would buckle inward, thus mimick- proteins, known for their role in polarization and ing ingression. unequal cell division, are also associated with the Ingression by apical constriction may be energeti- polarization that establishes this apical constriction. cally more favorable than other means of gap closure, such as the purse-string model. A study using com- puter algorithms to mimic gastrulating embryos showed How poor are they who have not gastrulation! that, when a cell constricts apically, it propagates a What wound did ever heal but by ingression? wave through the surrounding sheet of cells, causing (apologies to William Shakespeare) an inward buckling [9]. Morphological support for apical constriction in a developing organism came from the observation of bottle cells, for example during We all begin as a cluster of rather featureless cells; our primary invagination of epithelial cells in sea urchins final forms are sculpted into specialized tissue layers [1], in which bottle cells have been shown to be essen- which achieve their final state by the concerted move- tial for gastrulation [2].
    [Show full text]
  • Endocytosis Is Required for Efficient Apical Constriction During Xenopus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 20, 253–258, February 9, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.12.021 Report Endocytosis Is Required for Efficient Apical Constriction during Xenopus Gastrulation Jen-Yi Lee1,* and Richard M. Harland1,* To determine where endosomes traffic in bottle cells, we 1Department of Molecular and Cell Biology, labeled stage 9 embryos with biotin, quenched the reaction, University of California, Berkeley, Berkeley, CA 94720, USA and fixed the embryos at 30 min intervals (‘‘chase’’). As cells underwent AC, the number of endosomes also increased, strengthening the correlation between endocytosis and AC. Summary Endosomes trafficked away from the apical membrane, and some vesicles colocalized with the basolateral membrane Coordinated apical constriction (AC) in epithelial sheets (Figure 1D). drives tissue invagination [1, 2] and is required for diverse Previously, we showed that intact but not dynamic microtu- morphogenetic movements such as gastrulation [3], neuru- bules were required for AC [7]. If intact microtubules function as lation [4, 5], and organogenesis [6]. We showed previously tracks for endosomes, then nocodazole treatment should that actomyosin contractility drives AC in Xenopus laevis prevent endocytosis, whereas taxol treatment should not. bottle cells [7]; however, it remained unclear whether it Indeed, in nocodazole-treated embryos, endosomes remained does so in concert with other processes. Here we report at the apical membrane (see Figure S1 available online). In that endocytosis-driven membrane remodeling is required contrast, taxol-treated embryos exhibited internalized vesicles for efficient AC.
    [Show full text]
  • Sonic Hedgehog Signaling Directs Patterned Cell Remodeling During
    RESEARCH ARTICLE Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure Eric R Brooks1, Mohammed Tarek Islam1, Kathryn V Anderson2, Jennifer A Zallen1* 1Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States; 2Developmental Biology Program, Sloan Kettering Institute, New York, United States Abstract Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here, we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are flat with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain. *For correspondence: Introduction [email protected] Neural tube closure defects are among the most common structural birth defects, occurring in 1 in 1000 pregnancies worldwide (Wallingford et al., 2013; Zaganjor et al., 2016). During develop- Competing interests: The ment, neuroepithelial cells undergo extensive remodeling to transform a flat sheet into a fully closed authors declare that no tube that gives rise to the brain and spinal cord of the animal.
    [Show full text]
  • Wnt Ligand/Frizzled 2 Receptor Signaling Regulates Tube Shape and Branch-Point Formation in the Lung Through Control of Epithelial Cell Shape
    Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape Rachel S. Kadzika, Ethan David Cohenb, Michael P. Morleyc, Kathleen M. Stewartc,d, Min Min Luc, and Edward E. Morriseya,c,d,e,1 Departments of aCell and Developmental Biology and cMedicine, dCardiovascular Institute, and eInstitute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104; and bDivision of Endocrinology, Department of Medicine, University of Rochester, Rochester, NY 14642 Edited* by Brigid L. M. Hogan, Duke University Medical Center, Durham, NC, and approved July 16, 2014 (received for review April 11, 2014) Changing the morphology of a simple epithelial tube to form a apical expression of phospho-myosin light chain 2 (pMLC2) in- highly ramified branching network requires changes in cell behavior dicative of the decreased Rho signaling that is required for that lead to tissue-wide changes in organ shape. How epithelial cells thickening of the lung epithelium before new branch formation. in branched organs modulate their shape and behavior to promote Importantly, activation of Rho signaling can rescue the loss of bending and sculpting of the epithelial sheet is not well understood, Fzd2 signaling during lung branching morphogenesis. Together, and the mechanisms underlying this process remain obscure. We our data highlight a previously unappreciated mechanism in the show that the Wnt receptor Frizzled 2 (Fzd2) is required for domain formation of branched networks by the control of epithelial cell branch formation during the initial establishment of the respiratory shape through Wnt signaling. tree. Live imaging and transcriptome analysis of lung-branching morphogenesis demonstrate that Fzd2 promotes changes in epi- Results thelial cell length and shape.
    [Show full text]
  • Cadherin Preserves Cohesion Across Involuting Tissues During C. Elegans
    RESEARCH ARTICLE Cadherin preserves cohesion across involuting tissues during C. elegans neurulation Kristopher M Barnes1,2, Li Fan1†, Mark W Moyle3, Christopher A Brittin1, Yichi Xu1, Daniel A Colo´ n-Ramos3,4, Anthony Santella1,5, Zhirong Bao1* 1Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States; 2Graduate Program in Neuroscience, Weill Cornell Medicine, New York, United States; 3Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, United States; 4Instituto de Neurobiologı´a, Recinto de Ciencias Me´dicas, Universidad de Puerto Rico, San Juan, United States; 5Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, United States Abstract The internalization of the central nervous system, termed neurulation in vertebrates, is a critical step in embryogenesis. Open questions remain regarding how force propels coordinated tissue movement during the process, and little is known as to how internalization happens in invertebrates. We show that in C. elegans morphogenesis, apical constriction in the retracting pharynx drives involution of the adjacent neuroectoderm. HMR-1/cadherin mediates this process *For correspondence: via inter-tissue attachment, as well as cohesion within the neuroectoderm. Our results demonstrate [email protected] that HMR-1 is capable of mediating embryo-wide reorganization driven by a centrally located force generator, and indicate a non-canonical use of cadherin on the basal side of an epithelium that may Present address: †Helen and apply to vertebrate neurulation. Additionally, we highlight shared morphology and gene expression Robert Appel Alzheimer’s in tissues driving involution, which suggests that neuroectoderm involution in C. elegans is Disease Research Institute, Weill Cornell Medicine, New York, potentially homologous with vertebrate neurulation and thus may help elucidate the evolutionary United States origin of the brain.
    [Show full text]