In Situ Replication Rates for Uncultivated Bacteria in Microbial Communities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
- LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta. -
Marine Sediments Illuminate Chlamydiae Diversity and Evolution
Supplementary Information for: Marine sediments illuminate Chlamydiae diversity and evolution Jennah E. Dharamshi1, Daniel Tamarit1†, Laura Eme1†, Courtney Stairs1, Joran Martijn1, Felix Homa1, Steffen L. Jørgensen2, Anja Spang1,3, Thijs J. G. Ettema1,4* 1 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden 2 Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway 3 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, The Netherlands 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands. † These authors contributed equally * Correspondence to: Thijs J. G. Ettema, Email: [email protected] Supplementary Information Supplementary Discussions ............................................................................................................................ 3 1. Evolutionary relationships within the Chlamydiae phylum ............................................................................. 3 2. Insights into the evolution of pathogenicity in Chlamydiaceae ...................................................................... 8 3. Secretion systems and flagella in Chlamydiae .............................................................................................. 13 4. Phylogenetic diversity of chlamydial nucleotide transporters. .................................................................... -
The Bright Side of Microbial Dark Matter: Lessons Learned
Available online at www.sciencedirect.com ScienceDirect The bright side of microbial dark matter: lessons learned from the uncultivated majority 1 2 1 Lindsey Solden , Karen Lloyd and Kelly Wrighton Microorganisms are the most diverse and abundant life forms The first realizations of just how diverse and unexplored on Earth. Yet, in many environments, only 0.1–1% of them have microorganisms are came from analyzing microbial small been cultivated greatly hindering our understanding of the subunit ribosomal RNA (SSU or 16S rRNA) gene sequences microbial world. However, today cultivation is no longer a directly from environmental samples [7]. These analyses requirement for gaining access to information from the revealed that less than half of the known microbial phyla uncultivated majority. New genomic information from contained a single cultivated representative. Phyla com- metagenomics and single cell genomics has provided insights posed exclusively of uncultured representatives are referred into microbial metabolic cooperation and dependence, to as Candidate Phyla (CP). Borrowing language from generating new avenues for cultivation efforts. Here we astronomy, microbiologists operationally define these CP summarize recent advances from uncultivated phyla and as microbial dark matter, because these organisms likely discuss how this knowledge has influenced our understanding account for a large portion of the Earth’s biomass and of the topology of the tree of life and metabolic diversity. biodiversity, yet their basic metabolic and ecological prop- erties are not known. This uncultivated majority represents Addresses 1 a grand challenge to the scientific community and until we Department of Microbiology, The Ohio State University, Columbus, OH solve the mysteries of the CP, our knowledge of the micro- 43210, USA 2 Department of Microbiology, University of Tennessee, Knoxville, TN bial world around us is profoundly skewed by what we have 37996, USA cultivated in the laboratory [8 ]. -
Biological Capacities Clearly Define a Major Subdivision in Domain Bacteria 4 5 Raphaël Méheust+,1,2, David Burstein+,1,3,8, Cindy J
bioRxiv preprint doi: https://doi.org/10.1101/335083; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Research article 2 3 Biological capacities clearly define a major subdivision in Domain Bacteria 4 5 Raphaël Méheust+,1,2, David Burstein+,1,3,8, Cindy J. Castelle1,2,4 and Jillian F. Banfield1,2,4,5,6,7,*,# 6 7 1Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA 8 2Innovative Genomics Institute, Berkeley, CA, USA 9 3 California Institute for Quantitative Biosciences (QB3), University of California Berkeley, CA USA 10 4Chan Zuckerberg Biohub, San Francisco, CA, USA 11 5University of Melbourne, Melbourne, VIC, Australia 12 6Lawrence Berkeley National Laboratory, Berkeley, CA, USA 13 7Department of Environmental Science, Policy and Management, University of California, Berkeley, 14 Berkeley, CA, USA 15 8Present address: School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of 16 Life Sciences, Tel Aviv University, Tel Aviv, Israel 17 +These authors contributed equally to this work 18 *Correspondence: [email protected] 19 #Lead Contact 20 21 Resume 22 Phylogenetic analyses separate candidate phyla radiation (CPR) bacteria from other bacteria, but 23 the degree to which their proteomes are distinct remains unclear. Here, we leveraged a proteome 24 database that includes sequences from thousands of uncultivated organisms to identify protein 25 families and examine their organismal distributions. We focused on widely distributed protein 26 families that co-occur in genomes, as they likely foundational for metabolism. -
Biosynthetic Capacity, Metabolic Variety and Unusual Biology in the CPR and DPANN Radiations Cindy J
Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations Cindy J. Castelle 1,2, Christopher T. Brown 1, Karthik Anantharaman 1,5, Alexander J. Probst 1,6, Raven H. Huang3 and Jillian F. Banfield 1,2,4* 1Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 2Chan Zuckerberg Biohub, San Francisco, CA, USA. 3Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA. 4Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5Department of Bacteriology, University of WisconsinMadison, Madison, WI, USA. 6Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany. *e-mail: [email protected] Abstract Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth’s environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. -
Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR
Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication Charles Bernard, Romain Lannes, Yanyan Li, Éric Bapteste, Philippe Lopez To cite this version: Charles Bernard, Romain Lannes, Yanyan Li, Éric Bapteste, Philippe Lopez. Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication. mSystems, 2020, 5 (5), 10.1128/mSystems.00414-20. hal-02967400 HAL Id: hal-02967400 https://hal.archives-ouvertes.fr/hal-02967400 Submitted on 14 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Ecological and Evolutionary Science crossm Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication Downloaded from Charles Bernard,a,b Romain Lannes,a* Yanyan Li,b Éric Bapteste,a Philippe Lopeza aInstitut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, Paris, France bUnité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Museum National d’Histoire Naturelle, Paris, France ABSTRACT The bacterial candidate phyla radiation (CPR) and the archaeal DPANN superphylum are two novel lineages that have substantially expanded the tree of life due to their large phylogenetic diversity. -
Genome-Resolved Metagenomics Reveals Site-Specific Diversity of Episymbiotic CPR Bacteria and DPANN Archaea in Groundwater Ecosystems
ARTICLES https://doi.org/10.1038/s41564-020-00840-5 Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems Christine He 1, Ray Keren 2, Michael L. Whittaker3,4, Ibrahim F. Farag 1, Jennifer A. Doudna 1,5,6,7,8, Jamie H. D. Cate 1,5,6,7 and Jillian F. Banfield 1,4,9 ✉ Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host associa- tion of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproduc- ibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health. -
A Metagenomics Roadmap to the Uncultured Genome Diversity in Hypersaline Soda Lake Sediments Charlotte D
Vavourakis et al. Microbiome (2018) 6:168 https://doi.org/10.1186/s40168-018-0548-7 RESEARCH Open Access A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments Charlotte D. Vavourakis1 , Adrian-Stefan Andrei2†, Maliheh Mehrshad2†, Rohit Ghai2, Dimitry Y. Sorokin3,4 and Gerard Muyzer1* Abstract Background: Hypersaline soda lakes are characterized by extreme high soluble carbonate alkalinity. Despite the high pH and salt content, highly diverse microbial communities are known to be present in soda lake brines but the microbiome of soda lake sediments received much less attention of microbiologists. Here, we performed metagenomic sequencing on soda lake sediments to give the first extensive overview of the taxonomic diversity found in these complex, extreme environments and to gain novel physiological insights into the most abundant, uncultured prokaryote lineages. Results: We sequenced five metagenomes obtained from four surface sediments of Siberian soda lakes with a pH 10 and a salt content between 70 and 400 g L−1. The recovered 16S rRNA gene sequences were mostly from Bacteria,evenin the salt-saturated lakes. Most OTUs were assigned to uncultured families. We reconstructed 871 metagenome-assembled genomes (MAGs) spanning more than 45 phyla and discovered the first extremophilic members of the Candidate Phyla Radiation (CPR). Five new species of CPR were among the most dominant community members. Novel dominant lineages were found within previously well-characterized functional groups involved in carbon, sulfur, and nitrogen cycling. Moreover, key enzymes of the Wood-Ljungdahl pathway were encoded within at least four bacterial phyla never previously associated with this ancient anaerobic pathway for carbon fixation and dissimilation, including the Actinobacteria. -
Downloaded Under Project PRJNA273161 [13] Expressed As Mean ± Standard Error of Mean (SEM)
Tian et al. Microbiome (2020) 8:51 https://doi.org/10.1186/s40168-020-00825-w RESEARCH Open Access Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity Renmao Tian1, Daliang Ning1, Zhili He1, Ping Zhang1, Sarah J. Spencer2, Shuhong Gao1, Weiling Shi1, Linwei Wu1, Ya Zhang1, Yunfeng Yang3, Benjamin G. Adams4, Andrea M. Rocha5, Brittny L. Detienne4, Kenneth A. Lowe5, Dominique C. Joyner4, Dawn M. Klingeman5, Adam P. Arkin6,7, Matthew W. Fields8, Terry C. Hazen4,5, David A. Stahl9, Eric J. Alm2 and Jizhong Zhou1,3,10* Abstract Background: The newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known. Results: Here, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. -
Homeschool Record Keeping Pdf
Homeschool record keeping pdf Continue Bacteria time range: 4100-0Ma (2) Had. Archaic proterozoic fan. Sodium - The recent E. coli Escherichia has increased 15,000 times. TaxonomyDomen: BacteriaErenberg 1828 sensu Woese, Candler and Wheelis 1990 Thermomicrobials Diedermicos (Gram negative) Atidobachacteria, Akifiki, Armatimenadeths, Bacteroids, Caldizerica, Chlamydia, Chlorobi, Chrysiogenets, Cyanobacteria, Otreabibakters, Deinococus-Termus, Dictionoglomi, Elusimitrobia, Elusimorobia, Gemmaimonedet, Kiritimatiellae, Lentisfaer, Nitrospira, Planktonite, Proteobactery, Thermodesulfobacteria, Thermotoghe, Verru Candidate Blades, Absconditabacteria, Acetothermia, Egiribacteria, Aerofonet, Aninicanates, Atribacteria, Berkelbacteria, Kalesakaantes, Calditiceota , Cloacimonetes, Coprothermobacterota, Dadabacteria, Dependent, Dormibacteraeota, Dojkabacteria, Fervidibacteria, Fermentibacteria, Gracilibacteria, Hydrogenedents, Ignavibacteria, Katanobacteria , Kryptonia, Latescibacteria, Marinimicrobia, Melenabacteria, Superphilo Microgenomathes, Modribacteria, Nitrospina, Omnitromics, Superphilo Parkcoubacteria, Peregrinibacteria, Poribacteria, Pyropristinus, Rokubacteria, Saharibacteria, Tectomcrobia, Virtacteria, Cicibacteria microorganisms measuring several micrometers (usually from 0.5 to 5 mm in length) and various forms, including spheres (coconuts), bars (bacilli), curved threads (vibrions) and helical (spirots). Bacteria are prokaryotic cells, so unlike eukaryotic cells (animals, plants, fungi, etc.), they do not have a specific nucleus -
The Distinction of CPR Bacteria from Other Bacteria Based on Protein Family Content
Lawrence Berkeley National Laboratory Recent Work Title The distinction of CPR bacteria from other bacteria based on protein family content. Permalink https://escholarship.org/uc/item/08c1123p Journal Nature communications, 10(1) ISSN 2041-1723 Authors Méheust, Raphaël Burstein, David Castelle, Cindy J et al. Publication Date 2019-09-13 DOI 10.1038/s41467-019-12171-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-019-12171-z OPEN The distinction of CPR bacteria from other bacteria based on protein family content Raphaël Méheust 1,2, David Burstein 1,3,8, Cindy J. Castelle1,2,4 & Jillian F. Banfield 1,2,4,5,6,7 Candidate phyla radiation (CPR) bacteria separate phylogenetically from other bacteria, but the organismal distribution of their protein families remains unclear. Here, we leveraged sequences from thousands of uncultivated organisms and identified protein families that co- 1234567890():,; occur in genomes, thus are likely foundational for lineage capacities. Protein family presence/ absence patterns cluster CPR bacteria together, and away from all other bacteria and archaea, partly due to proteins without recognizable homology to proteins in other bacteria. Some are likely involved in cell-cell interactions and potentially important for episymbiotic lifestyles. The diversity of protein family combinations in CPR may exceed that of all other bacteria. Over the bacterial tree, protein family presence/absence patterns broadly recapi- tulate phylogenetic structure, suggesting persistence of core sets of proteins since lineage divergence. The CPR could have arisen in an episode of dramatic but heterogeneous genome reduction or from a protogenote community and co-evolved with other bacteria. -
Phylogenetic Clustering of Small Low Nucleic Acid-Content Bacteria Across Diverse Freshwater Ecosystems
The ISME Journal (2018) 12:1344–1359 https://doi.org/10.1038/s41396-018-0070-8 ARTICLE Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems 1,2 1 1 3 4 Caitlin R. Proctor ● Michael D. Besmer ● Timon Langenegger ● Karin Beck ● Jean-Claude Walser ● 1,2 3 1 Martin Ackermann ● Helmut Bürgmann ● Frederik Hammes Received: 9 July 2017 / Revised: 10 January 2018 / Accepted: 12 January 2018 / Published online: 7 February 2018 © The Author(s) 2018. This article is published with open access Abstract Here we used flow cytometry (FCM) and filtration paired with amplicon sequencing to determine the abundance and composition of small low nucleic acid (LNA)-content bacteria in a variety of freshwater ecosystems. We found that FCM clusters associated with LNA-content bacteria were ubiquitous across several ecosystems, varying from 50 to 90% of aquatic bacteria. Using filter-size separation, we separated small LNA-content bacteria (passing 0.4 µm filter) from large bacteria (captured on 0.4 µm filter) and characterized communities with 16S amplicon sequencing. Small and large bacteria each represented different sub-communities within the ecosystems’ community. Moreover, we were able to identify individual 1234567890();,: operational taxonomical units (OTUs) that appeared exclusively with small bacteria (434 OTUs) or exclusively with large bacteria (441 OTUs). Surprisingly, these exclusive OTUs clustered at the phylum level, with many OTUs appearing exclusively with small bacteria identified as candidate phyla (i.e. lacking cultured representatives) and symbionts. We propose that LNA-content bacteria observed with FCM encompass several previously characterized categories of bacteria (ultramicrobacteria, ultra-small bacteria, candidate phyla radiation) that share many traits including small size and metabolic dependencies on other microorganisms.