Downloaded Under Project PRJNA273161 [13] Expressed As Mean ± Standard Error of Mean (SEM)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Methane-Oxidizing Microorganisms in a Dutch Drinking Water Treatment Plant
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.103440; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in a Dutch drinking water treatment plant Lianna Poghosyan, Hanna Koch, Jeroen Frank, Maartje A.H.J. van Kessel, Geert Cremers, Theo van Alen, Mike S.M. Jetten, Huub J.M. Op den Camp, Sebastian Lücker* 5 Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands *Correspondence: [email protected] Keywords Sand filtration; nitrification; comammox Nitrospira; methanotrophic bacteria; metagenomics 10 Highlights • Microbial distribution was mainly influenced by sampling location within the DWTP. • Clade A comammox Nitrospira were the most abundant nitrifying guild in samples from the primary sand filter, while clade B dominated in samples from wall biofilm and the secondary filter. 15 • A novel methanotrophic bacterium affiliated with the Methylophilaceae family comprised the largest bacterial fraction in the primary sand filter. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.19.103440; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Elevated concentrations of ammonium and methane in groundwater can cause severe problems during drinking water production. -
Alteration of the Immune Response and the Microbiota of the Skin During a Natural Infection by Vibrio Harveyi in European Seabass (Dicentrarchus Labrax)
microorganisms Article Alteration of the Immune Response and the Microbiota of the Skin during a Natural Infection by Vibrio harveyi in European Seabass (Dicentrarchus labrax) María Cámara-Ruiz 1, Isabel M. Cerezo 2 , Francisco A. Guardiola 1 , José María García-Beltrán 1, M. Carmen Balebona 2 , Miguel Ángel Moriñigo 2 and María Ángeles Esteban 1,* 1 Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; [email protected] (M.C.-R.); [email protected] (F.A.G.); [email protected] (J.M.G.-B.) 2 Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (I.M.C.); [email protected] (M.C.B.); [email protected] (M.Á.M.) * Correspondence: [email protected] Abstract: Disease outbreaks continue to represent one of the main bottlenecks for the sustainable development of the aquaculture industry. In marine aquaculture, many species from the Vibrio genus are serious opportunistic pathogens responsible for significant losses to producers. In this study, the effects on the immune response and the skin microbiota of European sea bass (Dicentrarchus labrax) were studied after a natural disease outbreak caused by V. harveyi. Data obtained from infected Citation: Cámara-Ruiz, M.; and non-infected fish were studied and compared. Regarding the local immune response (skin Cerezo, I.M.; Guardiola, F.A.; mucus) a decrease in the protease activity was observed in infected fish. Meanwhile, at a systemic García-Beltrán, J.M.; Balebona, M.C.; level, a decrease in protease and lysozyme activity was reported while peroxidase activity showed a Moriñigo, M.Á.; Esteban, M.Á. -
S41598-020-62411-2.Pdf
www.nature.com/scientificreports OPEN Microbial Diversity and Metabolic Potential in the Stratifed Sansha Yongle Blue Hole in the South China Sea Peiqing He1,2,3*, Linping Xie1,2, Xuelei Zhang1,2, Jiang Li1,3, Xuezheng Lin1,3, Xinming Pu1,2, Chao Yuan1,2, Ziwen Tian4 & Jie Li5 The Sansha Yongle Blue Hole is the world’s deepest (301 m) underwater cave and has a sharp redox gradient, with oligotrophic, anoxic, and sulfdic bottom seawater. In order to discover the microbial communities and their special biogeochemical pathways in the blue hole, we analyzed the 16S ribosomal RNA amplicons and metagenomes of microbials from seawater depths with prominent physical, chemical, and biological features. Redundancy analysis showed that dissolved oxygen was the most important factor afecting the microbial assemblages of the blue hole and surrounding open sea waters, and signifcantly explained 44.7% of the total variation, followed by silicate, temperature, sulfde, ammonium, methane, nitrous oxide, nitrate, dissolved organic carbon, salinity, particulate organic carbon, and chlorophyll a. We identifed a bloom of Alteromonas (34.9%) at the primary nitrite maximum occurring in close proximity to the chlorophyll a peak in the blue hole. Genomic potential for nitrate reduction of Alteromonas might contribute to this maximum under oxygen decrease. Genes that would allow for aerobic ammonium oxidation, complete denitrifcation, and sulfur- oxidization were enriched at nitrate/nitrite-sulfde transition zone (90 and 100 m) of the blue hole, but not anammox pathways. Moreover, γ-Proteobacterial clade SUP05, ε-Proteobacterial genera Sulfurimonas and Arcobacter, and Chlorobi harbored genes for sulfur-driven denitrifcation process that mediated nitrogen loss and sulfde removal. -
Identical Bacterial Populations Colonize Premature Infant Gut, Skin, and Oral Microbiomes And
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates Matthew R. Olm1, Christopher T. Brown1, Brandon Brooks1, Brian Firek2, Robyn Baker3, David Burstein4, Karina Soenjoyo1, Brian C. Thomas4, Michael Morowitz2 and Jillian F. Banfield4,5,6* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 3Division of Newborn Medicine, Children’s Hospital of Pittsburgh and Magee-Womens Hospital of UPMC, Pittsburgh, United States 4Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 5Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 6Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. *Corresponding author Running title Metagenomics of infant skin, mouth, and gut Keywords Microbiome, metagenomics, growth rates, premature infants, strains Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth and gut of two hospitalized premature infants during the first month of life. -
Bacterial Diversity and Functional Analysis of Severe Early Childhood
www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health. -
Libros Sobre Enfermedades Autoinmunes: Tratamientos, Tipos Y Diagnósticos- Profesor Dr
- LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS . AUTOR: PROFESOR DR. ENRIQUE BARMAIMON.- - Doctor en Medicina.- - Cátedras de: - Anestesiología - Cuidados Intensivos - Neuroanatomía - Neurofisiología - Psicofisiología - Neuropsicología. - 9 TOMOS - - TOMO VI - -AÑO 2020- 1ª Edición Virtual: (.2020. 1)- - MONTEVIDEO, URUGUAY. 1 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - Queda terminantemente prohibido reproducir este libro en forma escrita y virtual, total o parcialmente, por cualquier medio, sin la autorización previa del autor. -Derechos reservados. 1ª Edición. Año 2020. Impresión [email protected]. - email: [email protected].; y [email protected]; -Montevideo, 15 de enero de 2020. - BIBLIOTECA VIRTUAL DE SALUD del S. M.U. del URUGUAY; y BIBLIOTECA DEL COLEGIO MÉDICO DEL URUGUAY. 0 0 0 0 0 0 0 0. 2 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - TOMO V I - 3 - LIBROS SOBRE ENFERMEDADES AUTOINMUNES: TRATAMIENTOS, TIPOS Y DIAGNÓSTICOS- PROFESOR DR. ENRIQUE BARMAIMON- 9 TOMOS- AÑO 2020.1- TOMO VI- - ÍNDICE.- - TOMO I . - - ÍNDICE. - PRÓLOGO.- - INTRODUCCIÓN. - CAPÍTULO I: -1)- GENERALIDADES. -1.1)- DEFINICIÓN. -1.2)- CAUSAS Y FACTORES DE RIESGO. -1.2.1)- FACTORES EMOCIONALES. -1.2.2)- FACTORES AMBIENTALES. -1.2.3)- FACTORES GENÉTICOS. -1.3)- Enterarse aquí, como las 10 Tipos de semillas pueden mejorar la salud. - 1.4)- TIPOS DE TRATAMIENTO DE ENFERMEDADES AUTOINMUNES. -1.4.1)- Remedios Naturales. -1.4.1.1)- Mejorar la Dieta. -
Marine Sediments Illuminate Chlamydiae Diversity and Evolution
Supplementary Information for: Marine sediments illuminate Chlamydiae diversity and evolution Jennah E. Dharamshi1, Daniel Tamarit1†, Laura Eme1†, Courtney Stairs1, Joran Martijn1, Felix Homa1, Steffen L. Jørgensen2, Anja Spang1,3, Thijs J. G. Ettema1,4* 1 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden 2 Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway 3 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, The Netherlands 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands. † These authors contributed equally * Correspondence to: Thijs J. G. Ettema, Email: [email protected] Supplementary Information Supplementary Discussions ............................................................................................................................ 3 1. Evolutionary relationships within the Chlamydiae phylum ............................................................................. 3 2. Insights into the evolution of pathogenicity in Chlamydiaceae ...................................................................... 8 3. Secretion systems and flagella in Chlamydiae .............................................................................................. 13 4. Phylogenetic diversity of chlamydial nucleotide transporters. .................................................................... -
Genome-Reconstruction for Eukaryotes from Complex Natural Microbial Communities
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-reconstruction for eukaryotes from complex natural microbial communities ,$ Patrick T. West1, Alexander J. Probst2 , Igor V. Grigoriev1,5, Brian C. Thomas2, Jillian F. Banfield2,3,4* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5US Department of Energy Joint Genome Institute, Walnut Creek, California, USA. * Corresponding Author $present address: Group for Aquatic Microbial Ecology, Biofilm Center, Department of Chemistry, University of Duisburg-Essen, Essen, Germany Running title Metagenomic Reconstruction of Eukaryotic Genomes Keywords metagenomics, eukaryotes, genome, gene prediction Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Microbial eukaryotes are integral components of natural microbial communities and their inclusion is critical for many ecosystem studies yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer- based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation and prediction of metabolic potential. -
Understanding Human Microbiota Offers Novel and Promising Therapeutic Options Against Candida Infections
pathogens Review Understanding Human Microbiota Offers Novel and Promising Therapeutic Options against Candida Infections Saif Hameed 1, Sandeep Hans 1, Ross Monasky 2, Shankar Thangamani 2,* and Zeeshan Fatima 1,* 1 Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar 122413, India; [email protected] (S.H.); [email protected] (S.H.) 2 Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; [email protected] * Correspondence: [email protected] (S.T.); [email protected] (Z.F.) Abstract: Human fungal pathogens particularly of Candida species are one of the major causes of hospital acquired infections in immunocompromised patients. The limited arsenal of antifungal drugs to treat Candida infections with concomitant evolution of multidrug resistant strains further complicates the management of these infections. Therefore, deployment of novel strategies to surmount the Candida infections requires immediate attention. The human body is a dynamic ecosystem having microbiota usually involving symbionts that benefit from the host, but in turn may act as commensal organisms or affect positively (mutualism) or negatively (pathogenic) the physiology and nourishment of the host. The composition of human microbiota has garnered a lot of recent attention, and despite the common occurrence of Candida spp. within the microbiota, there is still an incomplete picture of relationships between Candida spp. and other microorganism, as well as how such associations are governed. These relationships could be important to have a more holistic understanding of the human microbiota and its connection to Candida infections. Understanding the mechanisms behind commensalism and pathogenesis is vital for the development of efficient Citation: Hameed, S.; Hans, S.; Monasky, R.; Thangamani, S.; Fatima, therapeutic strategies for these Candida infections. -
Litopenaeus Vannamei)
marine drugs Article Effects of Chitosan–Gentamicin Conjugate Supplement on Non-Specific Immunity, Aquaculture Water, Intestinal Histology and Microbiota of Pacific White Shrimp (Litopenaeus vannamei) Fengyan Liang 1,2, Chengpeng Li 1,*, Tingting Hou 1, Chongqing Wen 2, Songzhi Kong 1, Dong Ma 3, Chengbo Sun 2,4,* and Sidong Li 1 1 School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; [email protected] (F.L.); [email protected] (T.H.); [email protected] (S.K.); [email protected] (S.L.) 2 Department of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; [email protected] 3 Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; [email protected] 4 Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China * Correspondence: [email protected] (C.L.); [email protected] (C.S.) Received: 8 July 2020; Accepted: 7 August 2020; Published: 10 August 2020 Abstract: When the aquaculture water environment deteriorates or the temperature rises, shrimp are susceptible to viral or bacterial infections, causing a large number of deaths. This study comprehensively evaluated the effects of the oral administration of a chitosan–gentamicin conjugate (CS-GT) after Litopenaeus vannamei were infected with Vibrio parahaemolyticus, through nonspecific immunity parameter detection, intestinal morphology observation, and the assessment of microbial flora diversification by 16S rRNA gene sequencing. The results showed that the oral administration of CS-GT significantly increased total hemocyte counts and reduced hemocyte apoptosis in shrimp (p < 0.05). The parameters (including superoxide dismutase, glutathione peroxidase, glutathione, lysozyme, acid phosphatase, alkaline phosphatase, and phenoloxidase) were significantly increased (p < 0.05). -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
The Bright Side of Microbial Dark Matter: Lessons Learned
Available online at www.sciencedirect.com ScienceDirect The bright side of microbial dark matter: lessons learned from the uncultivated majority 1 2 1 Lindsey Solden , Karen Lloyd and Kelly Wrighton Microorganisms are the most diverse and abundant life forms The first realizations of just how diverse and unexplored on Earth. Yet, in many environments, only 0.1–1% of them have microorganisms are came from analyzing microbial small been cultivated greatly hindering our understanding of the subunit ribosomal RNA (SSU or 16S rRNA) gene sequences microbial world. However, today cultivation is no longer a directly from environmental samples [7]. These analyses requirement for gaining access to information from the revealed that less than half of the known microbial phyla uncultivated majority. New genomic information from contained a single cultivated representative. Phyla com- metagenomics and single cell genomics has provided insights posed exclusively of uncultured representatives are referred into microbial metabolic cooperation and dependence, to as Candidate Phyla (CP). Borrowing language from generating new avenues for cultivation efforts. Here we astronomy, microbiologists operationally define these CP summarize recent advances from uncultivated phyla and as microbial dark matter, because these organisms likely discuss how this knowledge has influenced our understanding account for a large portion of the Earth’s biomass and of the topology of the tree of life and metabolic diversity. biodiversity, yet their basic metabolic and ecological prop- erties are not known. This uncultivated majority represents Addresses 1 a grand challenge to the scientific community and until we Department of Microbiology, The Ohio State University, Columbus, OH solve the mysteries of the CP, our knowledge of the micro- 43210, USA 2 Department of Microbiology, University of Tennessee, Knoxville, TN bial world around us is profoundly skewed by what we have 37996, USA cultivated in the laboratory [8 ].