Conversion of Fogwater and Aerosol Organic Nitrogen to Ammonium, Nitrate, and Nox During Exposure to Simulated Sunlight and Ozon

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Fogwater and Aerosol Organic Nitrogen to Ammonium, Nitrate, and Nox During Exposure to Simulated Sunlight and Ozon Environ. Sci. Technol. 2003, 37, 3522-3530 Past studies have shown that ON compounds are subject Conversion of Fogwater and Aerosol to chemical and photochemical transformations in the Organic Nitrogen to Ammonium, troposphere, forming products that might potentially influ- ence the properties of atmospheric condensed phases and Nitrate, and NOx during Exposure to the bioavailability of N in deposition (1, 17-21). For instance, the more bioavailable, lower molecular weight compounds, Simulated Sunlight and Ozone such as amino acids and urea, usually account for less than 20% of the atmospheric ON pool (8, 9, 11, 22, 23), while QI ZHANG² AND CORT ANASTASIO* larger and less bioavailable species, such as humic substances, appear to be more abundant (24-26). Although biologically Atmospheric Science Program, Department of Land, Air, and refractory (27), humic substances are photochemically reac- Water Resources, University of California, One Shields Avenue, tive (28, 29), and exposure to sunlight might cause them to Davis, California 95616-8627 decompose into smaller and more bioavailable molecules. Indeed, sunlight illumination of organic matter from surface waters leads to the formation of amino acids and ammonium - Although organic nitrogen (ON) compounds are apparently (30 33). While similar reactions might occur in atmospheric ubiquitous in the troposphere, very little is known about drops and particles, no such studies have been performed, and little is known about the transformation rates and fates their fate and transformations. As one step in addressing of atmospheric organic nitrogen. this issue, we have studied the transformations of bulk The photochemical transformations of specific ON com- (uncharacterized) organic nitrogen in fogwaters and aerosol pounds, such as amino acids, nitrogen heterocycles, and aqueous extracts during exposure to simulated sunlight nitroaromatics, have been studied in atmospheric samples and O3. Our results show that over the course of several or under atmospherically relevant conditions (1, 19-21). hours of exposure a significant portion of condensed-phase However, studies of individual compounds are limited by organic nitrogen is transformed into ammonium, nitrite, the fact that the bulk of ON in atmospheric drops and particles nitrate, and NOx. For nitrite, there was both photochemical is uncharacterized (8, 9, 11, 12). Furthermore, because the formation and destruction, resulting in a slow net loss. reactivity of individual ON compounds varies widely (1, 19), Ammonium and nitrate were formed at initial rates on the it is currently infeasible to extrapolate from single-compound order of a few micromolar per hour in the bulk fogwaters, studies to transformation rates of bulk (and largely unchar- acterized) organic nitrogen in the atmosphere. Therefore, ∼ -3 -1 corresponding to formation rates of 10 and 40 ng m h , we initiated this study to examine photochemical transfor- respectively, in ambient fog. The average initial formation mations of bulk organic N in atmospheric fogwaters and -3 -1 + rate (expressed as ng (m of air) h )ofNH4 in the aerosol particles. We describe here a preliminary set of aqueous extracts of fine particles (PM2.5) was approximately experiments to examine whether bulk atmospheric organic one-half of the corresponding fogwater value. Initial N is transformed during exposure to sunlight and, if so, formation rates of NOx (i.e., NO + NO2) were equivalent whether these reactions form inorganic N. In addition, to ∼2-11 pptv h-1 in the three fogwaters tested. Although because ozone can be a major sink for some atmospheric the formation rates of ammonium and nitrate were organic nitrogen compounds (19, 22), the influence of ozone relatively small as compared to their initial concentrations on organic nitrogen transformations and inorganic N forma- tion was also investigated. in fogwaters (∼200-2000 µM) and aerosol particles (∼400- - 1500 ng m 3), this photochemical mineralization and 2. Experimental Methods ªrenoxificationº from condensed-phase organic N is a 2.1. Samples, Materials, and Analyses. Since details of our previously uncharacterized source of inorganic N in the sampling dates and times, analytical methods, and sample atmosphere. This conversion also represents a new characteristics have been presented in prior reports (8, 9, component in the biogeochemical cycle of nitrogen that 22), only the main points are given here. Fogwaters were might have significant influences on atmospheric composition, collected at the Davis, CA, NADP site (CA88; 38°33′ N, 121°38′ condensed-phase properties, and the ecological impacts W) during winters from 1997 to 2001 using a Caltech Active of N deposition. Strand Cloudwater Collector (CASCC2). Immediately after collection, samples were filtered (0.22 µm Teflon) and stored frozen (-20 °C) in HDPE bottles. PM2.5 samples were collected 1. Introduction at the same location during August 1997-July 1998. Water- Organic nitrogen (ON) has been measured in precipitation soluble particle components were extracted into Milli-Q water (1-5), dry deposition (1, 5, 6), cloud waters (7), fogwaters (8), (g18.2 MΩ-cm) by sonication, followed by filtration (0.22 and atmospheric particles (4, 9-11). The ubiquity of these µm Teflon) and frozen storage (-20 °C) in HDPE bottles. + - - compounds suggests that they might play important roles in Concentrations of NH4 ,NO3 , and NO2 were analyzed atmospheric chemistry and in the biogeochemical cycling of using a Dionex DX-120 ion chromatograph (IC) with con- N. In addition, since organic forms often represent a ductivity detection. Dissolved organic nitrogen (DON) was significant and bioavailable portion of the total N in determined as the difference in inorganic N concentrations deposition (3-7, 12), atmospheric ON can be a nutrient in a given fogwater before and after adjustment to pH ≈3 burden to aquatic and terrestrial ecosystems (5, 13-16). and 24 h of illumination with 254 nm of light (to convert + - DON to inorganic forms): [DON] ) ([NH4 ] + [NO3 ] + * Corresponding author e-mail: [email protected]; tele- [NO -]) - ([NH +] + [NO -] + [NO -]) . phone: (530)754-6095; fax: (530)752-1552. 2 after 254 nm hν 4 3 2 before 254 nm hν ² Present address: Cooperative Institute for Research in Envi- Concentrations of each N species in all samples were ronmental Sciences (CIRES), 216 UCB, University of Colorado, considerably larger than the corresponding detection limits + - - Boulder, CO 80309-0216. (i.e., ∼0.1 µM for NH4 ,NO3 , and NO2 and 1.0 µM for DON). 3522 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 37, NO. 16, 2003 10.1021/es034114x CCC: $25.00 2003 American Chemical Society Published on Web 07/19/2003 into the quartz cuvette (Figure 1). O3 from the ªhigh- concentrationº tube (∼1 ppmv) was used to oxidize NO to NO2 (see below). The air/ozone flow exiting the quartz cuvette was first filtered (5-µm unlaminated Teflon, Pall-Gelman) to remove any particles or drops generated during bubbling and then passed through a denuder coated with citric acid to collect FIGURE 1. Equipment used to measure the photoformation of NH3(g) and then a denuder coated with Na2CO3 to collect inorganic nitrogen in experiments with ozone purging. Chemical HNO2(g) and HNO3(g). Downstream of these two denuders formulas (e.g., NH and NO ) indicate the species collected on each was a 1-L Pyrex reaction flask where NO was oxidized to NO2 3 x ∼ component. (and more oxidized forms) by mixing with 1 ppmv O3 at a flow rate of 0.5 L min-1. The reaction flask was kept at ambient temperature and pressure and was covered in aluminum Concentrations of total N (TN) were determined from the foil to keep it dark. NO2 and other oxidized forms were + - sum of N in the sample solution (([NH4 ] + [NO3 ] + collected downstream of the reaction flask by two denuders - [NO2 ])after 254 nm hν, see section 2.2) plus, in the experiments coated with a solution of 10% guaiacol and 5% NaOH in + with ozone exposure, the concentrations of gas-derived NH4 , methanol (36). - - NO3 , and NO2 found on the denuders and reaction flask At measured time intervals, aliquots of the fog sample (section 2.3). Note that in the samples exposed to ozone, the were taken from the quartz cuvette; diluted 10-50 times + - - sum of nitrate and nitrite includes photoproduced NOx that with Milli-Q; and measured for NH4 ,NO3 ,NO2 , and DON. - - was converted to NO3 and NO2 in the reaction flask. At the same time, the exposed denuders and reaction flask 2.2. Dissolved Inorganic N (DIN) Formation during were replaced by a new set and were each extracted with 2.0 Simulated Sunlight Illumination. 2.2.1. Lyophilized Fog and mL of Milli-Q water. The aqueous extract from the citric + + PM2.5 Samples. Because concentrations of NH4 were gener- acid-coated denuder was analyzed for NH4 ; extracts from - - ally high in our samples (8, 9), we were initially concerned the other components were analyzed for NO3 and NO2 . + - - that it would be difficult to distinguish between the photo- Concentrations of NH4 ,NO2 , and NO3 formed in the formation of DIN and analytical variations. To increase our fogwaters were calculated by combining the amounts in the + ability to see the photochemical formation of NH4 , the first quartz cuvette with those collected on the citric acid-coated group of fogwaters and aerosol extracts were lyophilized (i.e., and Na2CO3-coated denuder, respectively. Concentrations + - - freeze-dried; 34) to reduce NH4 levels prior to illumination. of NOx were calculated from the sum of NO3 and NO2 To do this, NaOH (1 M in Milli-Q) was added to form NH4OH measured on the two guaiacol-coated denuders and in the stoichiometrically (based on the initial measurement of reaction flask. Controls were run in the same way as those + NH4 ); the sample was rapidly frozen in liquid nitrogen; and in section 2.2 (i.e., without O3 bubbling through the sample).
Recommended publications
  • Chemical Resistance: Deco-Trowel
    CHEMICAL RESISTANCE DECO-TROWEL ® SERIES 223 Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 1 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 COMMON PROBLEM AREAS FOR COATINGS AND SOLUTIONS Problem: Coating Solution: Points of failure Carefully and due to thin spots fully coat in coating Problem: Rough Pinhole Solution: Uneven Undercut Grind smooth welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Coating Sharp surface Solution: contours create Round the thin spots in contours coating Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover 2 channels back to back IMPORTANT: Definitions for the terms and acronyms used in this guide to describe the recommended exposures, along with other important information, can be found on the cover page of this guide or by contacting Tnemec Technical Service. Coatings should not be applied in a chemical exposure environment until the user has thoroughly read and understood the product information and full project details have been discussed with Tnemec Technical Service. Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 2 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 ¹ Product is NOT suitable for direct or indirect food contact. Intended Use and temperature information relates to product’s performance capabilities only.
    [Show full text]
  • Combustion Synthesis of Aluminum Oxynitride in Loose Powder Beds
    materials Article Combustion Synthesis of Aluminum Oxynitride in Loose Powder Beds Alan Wilma ´nski*, Magdalena Zarzecka-Napierała and Zbigniew P˛edzich* Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; [email protected] * Correspondence: [email protected] (A.W.); [email protected] (Z.P.) Abstract: This paper describes combusting loose powder beds of mixtures of aluminum metal powders and aluminum oxide powders with various grain sizes under various nitrogen pressure. The synthesis conditions required at least 20/80 weight ratio of aluminum metal powder to alumina powder in the mix to reach approximately 80 wt% of γ-AlON in the products. Finely ground fused white alumina with a mean grain size of 5 µm was sufficient to achieve results similar to very fine alumina with 0.3 µm grains. A lower nitrogen pressure of 1 MPa provided good results, allowing a less robust apparatus to be used. The salt-assisted combustion synthesis upon addition of 10 wt% of ammonium nitrite resulted in a slight increase in product yield and allowed lower aluminum metal powder content in mixes to be ignited. Increasing the charge mass five times resulted in a very similar γ-AlON yield, providing a promising technology for scaling up. Synthesis in loose powder beds could be utilized for effective production of relatively cheap and uniform AlON powder, which could be easily prepared for forming and sintering without intensive grounding and milling, which usually introduce serious contamination. Keywords: aluminum oxynitride; combustion synthesis; salt-assisted; SHS; AlON Citation: Wilma´nski,A.; Zarzecka-Napierała, M.; P˛edzich,Z.
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • DROCARKOSY, IS Prrified AIR. by ALBERT R. LEEDS
    ATOMATION OF OXYGEN. 17 ATOZIIATION (2d PAPER). ATOM~~TIO~OF OXYGEN AT ELEVL~TEDTENPERBTURES, /lXh;D TIIE PRODUC- TIOS OF HYDROGEN PEROXIDE AKD AMMOSIITM NITRITE, AKD THE XOK-ISOLATIOK OF OZOKE, IN THE BC'KKISG OF PURIFIED HYDROGEN ASD HY- DROCARKOSY, IS PrRIFIED AIR. BY ALBERTR. LEEDS. It has heretofore beeii est:iblished, by the fact of the conversion of carbon monoxide into dioxide during the slow oxidation of phos- phorus, that the formation of ozone, hydrogen peroxide and am- monium nitrite, in the course of this eremacausis, is preceded by the resolution of the oxygen molecule into its constituent atoms. The converse of this propo4tion, viz.: That when oxidation occurB with the contemporaneous $ormation of the three products enu- merated, this oxidation has heen preceded by the prodnction of atomic oxygen, has not as yet been satisfactorily established, and awaits experimental proof. The object of this second paper is to present the conflicting tes- timony as to whether these three bodies are formed during the rapid combustion of hydrogenous substances, and the results of a new experimental inquiry. According to SchBnbein, the formation of ozone occurred in all cases of slow oxidation in presence of atmospheric air. Moreover, that when readily oxidizable metals, like zinc and iron, were agi- tated in contact with air and water, hydrogen peroxide was formed. Also, that ozone, in presence of air and nioisture, would generate ammonium nitrite. This last statement, after long controversy, has been satisfac- torily disproven by Carius.* Satisfactorily, because Berthelott working independently and at a later period, has entirely confirmed the results obtained by Carius.
    [Show full text]
  • Write and Balance Chemical Equations: 1. Aqueous Ammonium Chloride Reacts with Aqueous Sodium Hydroxide to Form Ammonia Gas, Liquid Water, and Aqueous Sodium Chloride
    Write and balance chemical equations: 1. Aqueous ammonium chloride reacts with aqueous sodium hydroxide to form ammonia gas, liquid water, and aqueous sodium chloride. 2. Aqueous sodium phosphate and liquid water are formed when aqueous sodium hydroxide reacts with phosphoric acid. 3. When heated, solid carbon reacts with oxygen gas to form carbon monoxide gas. 4. Solid carbon reacts with oxygen gas to form carbon dioxide gas. 5. Solid sodium reacts with liquid bromine to form solid sodium bromide. 6. Glass is often etched to provide a design. In this process the calcium silicate found in glass reacts with aqueous hydrofluoric acid to produce aqueous calcium fluoride, silicon tetrafluoride gas and liquid water. 7. When heated, solid potassium chlorate yields solid potassium chloride and oxygen gas. 8. When heated, solid calcium hydrogen carbonate yields solid calcium carbonate, carbon dioxide gas, and water vapor. 9. Ethane gas, C 2H6(g), reacts with oxygen gas to form carbon dioxide gas and water vapor. 10. Aqueous copper(II) nitrate reacts with aqueous sodium iodide to form solid copper(I) iodide, aqueous iodine, and aqueous sodium nitrate. 11. potassium chlorate(s) → potassium chloride(s) + oxygen(g) 12. lead(IV) oxide(s) → lead(II) oxide(s) + oxygen(g) 13. aluminum(s) + lead(II) nitrate(aq) → aluminum nitrate(aq) + lead(s) 14. potassium(s) + water(l) → potassium hydroxide(aq) + hydrogen(g) 15. sodium sulfite(aq) + hydrochloric acid → sodium chloride(aq) + water(l) + sulfur dioxide(s) 16. Ammonium sulfate(aq) + potassium hydroxide(aq) → potassium sulfate(aq) + ammonia(g) + water(l) 17. Lead(II) nitrate(aq) + potassium sulfide(aq) → potassium nitrate(aq) + lead(II) sulfide(s) 18.
    [Show full text]
  • Using Ozonation and Alternating Redox Potential to Increase Nitrogen and Estrogen Removal While Decreasing Waste Activated Sludg
    USING OZONATION AND ALTERNATING REDOX POTENTIAL TO INCREASE NITROGEN AND ESTROGEN REMOVAL WHILE DECREASING WASTE ACTIVATED SLUDGE PRODUCTION by Magdalena Anna Dytczak A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Environmental Engineering Department of Civil Engineering University of Manitoba Winnipeg, Manitoba R3T 5V6 Canada Copyright © 2008 by Magdalena Anna Dytczak ACKNOWLEDGEMENTS I would first like to thank Dr. Jan Oleszkiewicz for all his help and support and for giving me the great opportunity to do Ph.D. research in Canada. I would like to thank my Advisory Committee for all help and encouragement; especially Dr. Kathleen Londry for all her mentoring, guidance throughout this work and never-ending enthusiasm. I would also like to thank Dr. Hansruedi Siegrist for helpful suggestions and comments regarding the ozone work. Thanks to Judy Tingley for her technical expertise and to Andre Dufresne for advice on the microscopy work. I would like to acknowledge the outstanding microbiology summer students: Jennifer Kroeker for great help with the lab reactors and image analysis, and Christopher Bryant Roy for the excellent technical assistance with estrogen studies. I am indebted to Dr. Ramesh Goel and Ms. Tania Datta, PhD Candidate from The University of Utah, Salt Lake City, for their invaluable training in the fluorescent microscopy techniques. Thanks to my colleagues Qiuyan Yuan, Dominika Celmer, Bartek Puchajda and Babak Rezania for their help in the lab, discussions, and all the support over the past four years. This research was financially supported by the University of Manitoba, a Strategic Project Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), the City of Winnipeg - Water and Waste Department and by the Manitoba Conservation - Sustainable Development Innovation Fund.
    [Show full text]
  • UNION CHRISTIAN COLLEGE Aluva- 683 102 (Affiliated to Mahatma Gandhi University, Kottayam) Ernakulam Dt
    Post Box: 5 UNION CHRISTIAN COLLEGE Aluva- 683 102 (Affiliated to Mahatma Gandhi University, Kottayam) Ernakulam Dt. Kerala Fax: 91-484- 2607534 Accredited by NAAC with “A” Grade, Cycle-4 91-484-2606033, 2609194 Email: [email protected] LIMITED TENDER NOTICE No. Department: Chemistry Sealed tenders are invited for the supply of the following Items: CHEMICALS ACETANILIDE ACETONE ACETONE COMML ACETOPHENONE ACETIC ACID GLACIAL ACID HYDROCHLORIC PURE ACID HYDROCHLORIC COMML ACID NITRIC COMML ACID NITRIC PURE ACID ORTHO- PHOSPHORIC ACID SULPHURIC COMML ACID SULPHURIC PURE AGAR AGAR ALCOHOL AMYL ISO – AMYL ALCOHOL ALUMINA (NEUTRAL) ALUMINIUM CHLORIDE ALUMINIUM NITRATE ALUMINIUM SULPHATE AMINO NAPHTHALENE- ALPHA AMINO PHENOL AMMONIA SOLUTION ER / AR AMMONIUM CARBONATE AMMONIUM ACETATE AMMONIUM BROMIDE AMMONIUM BORATE AMMONIUM CERIC SULPHATE AMMONIUM CERIC NITRATE AMMONIUM CHLORIDE AR AMMONIUM CHLORIDE PURE AMMONIUM CHLORIDE COMML AMMONIUM FORMATE AMMONIUM FLURIDE AMMONIUM NITRITE AMMONIUM NITRATE AMMONIUM NICKEL(II) SULPHATE AMMONIUM OXALATE AMMONIUM PURPURATE (MUREXIDE) AMMONIUM SULPHATE AMMONIUM SULPHIDE AMMONIUM IRON SULPHATE AMMONIUM FERROUS SULFATE AMMONIUM MOLYBDATE AMMONIUM IRON (II) SULPHATE 2-AMINO PYRIDINE Mohr's Salt AMMONIUM THIO CYNATE AMMONIUM THIOSULPHATE ANILINE ANISOLE PARA ANISALDEHYDE ANTHRACENE ANTHRANILIC ACID BARIUM CHLORIDE AR BARIUM CHLORIDE PURE BARIUM NITRATE BENZALDEHYDE BENZENE BENZOIC ACID BENZOIN BENZOPHENONE BENZIL BENZYL ALCOHOL BROMINE BIPHENYLE CALCIUM CHLORIDE (ANHYDROUS) CALCIUM FLURIDE CALCIUM HYDROXIDE CALCIUM
    [Show full text]
  • Summary of Chemical Hazards
    CHEMICAL HAZARDS Taken in part from: www.southalabama.edu/environmental/ chemicalhygieneplanappendixb2003.DOC Chemicals are considered hazardous if they pose either PHYSICAL or HEALTH hazards to workers exposed to them. PHYSICAL HAZARDS include: • Fire or explosions • Sudden releases of pressure (for example what happens when a tank of compressed gas is punctured) and: • Reactivity (if a chemical can burn, explode or release dangerous gases after contact with water, air or other chemicals). HEALTH HAZARDS are illnesses or other health problems that could develop as a result of exposure to a hazardous chemical. Health hazards could be as minor as a headache or mild skin irritation or as major as cancer (or in rare cases, death) HAZARD TYPES CORROSIVE—substances that by direct chemical action are injurious to body tissue or corrosive to metal. Corrosive injury may be to a minor degree (irritation) or actual physical disruption of the body tissues. COMMON CORROSIVE LIQUIDS INORGANIC ACIDS ORGANIC ACIDS OTHER INORGANICS Chlorosulfonic Acetic Bromine Chromic Butyric Phosphorous Trichloride Hydrochloric Chloroacetic Silicon Tetrachloride Nitric Formic Sulfuryl Chloride Sulfuric Thionyl Chloride Peroxides CAUSTIC SOLUTIONS ORGANIC SOLVENTS OTHER ORGANICS Ammonia Dichlorethylene Acetic Anhydride Sodium Hydroxide Ethylene Chlorohydrin Liquefied Phenol Potassium Hydroxide Perchloroethylene Triethanolamine Methyl Ethyl Ketone 2-Aminoethanol Gasoline HAZARDS AND PRECAUTIONARY MEASURES Everyone knows mineral acids can cause burns. Few persons realize the extent to which they can damage body tissue. The concentration and duration of exposure control the degree of injury. The primary modes of attack of corrosive liquids are the skin and eyes. Concentrated alkaline solutions have a more corrosive effect on tissue than most strong acids.
    [Show full text]
  • The PII Protein in the Cyanobacterium Synechococcus Sp. Strain PCC 7942 Is Modified by Serine Phosphorylation and Signals the Ce
    JOURNAL OF BAcrERIOLOGY, Jan. 1994, p. 84-91 Vol. 176, No. 1 0021-9193/94/$04.00+0 Copyright C 1994, American Society for Microbiology The PII Protein in the Cyanobacterium Synechococcus sp. Strain PCC 7942 Is Modified by Serine Phosphorylation and Signals the Cellular N-Status KARL FORCHHAMMERt AND NICOLE TANDEAU DE MARSAC* Unitt de Physiologie Microbienne, Departement de Biochimie et Genetique Moleculaire, Institut Pasteur, 75724 Paris Cedex 15, France Received 1 September 1993/Accepted 22 October 1993 ThegLiB gene product (PI, protein) from Synechococcius sp. has previously been identified among 32P-labeled proteins, and its modification state-has been observed to depend on both the nitrogen source and the spectral light quality (N. F. Tsinoremas, A. M. Castets, M. A. Harrison, J. F. Allen, and N. Tandeau de Marsac, Proc. Natl. Acad. Sci. USA 88.45654569, 1991). As shown in this study, modification of the PII protein primarily responds to the N-status of the cell, and its light-dependent variations are mediated through nitrate metabolism. Modification of the PII protein results in the appearance of three isomeric forms with increasing negative charge. Unlike its homolog counterparts characterized so far, PII in Synechococcus sp. is modified by phosphorylation on a serine residue, which represents a unique kind of protein modification in bacterial nitrogen signalling pathways. Cyanobacteria are characterized by an autotrophic mode of product,. called the PII protein, was previously identified in the growth, performing oxygenic photosynthesis. Their simple closely related strain Synechococcus sp. strain PCC 6301 from nutritional requiremen-ts, together with highly evolved capaci- in vivo 32P-labeling experiments (8, 22).
    [Show full text]
  • Niche Differentiation of Ammonia and Nitrite Oxidizers Along a Salinity Gradient from the Pearl River Estuary to the South China
    1 Niche differentiation of ammonia and nitrite oxidizers along a salinity gradient 2 from the Pearl River estuary to the South China Sea 3 4 Lei Hou1,2,†, Xiabing Xie1,†, Xianhui Wan1, Shuh-Ji Kao1,2, Nianzhi Jiao1,2, Yao Zhang1,2 5 1State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China 6 2College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China 7 8 Correspondence to: Yao Zhang ([email protected]) 9 †Contributed equally 10 1 1 Abstract 2 The niche differentiation of ammonia and nitrite oxidizers are controversial because they display 3 disparate patterns in estuarine, coastal, and oceanic regimes. We analyzed diversity and abundance of 4 ammonia-oxidizing archaea (AOA) and β-proteobacteria (AOB), nitrite-oxidizing bacteria (NOB), and 5 nitrification rates to identify their niche differentiation along a salinity gradient from the Pearl River 6 estuary to the South China Sea. AOA were generally more abundant than β-AOB; however, AOB more 7 clearly attached to particles compared with AOA in the upper reaches of the Pearl River estuary. The 8 NOB Nitrospira had higher abundances in the upper and middle reaches of the Pearl River estuary, 9 while Nitrospina was dominant in the lower estuary. In addition, AOB and Nitrospira could be more 10 active than AOA and Nitrospina since significantly positive correlations were observed between their 11 gene abundance and the nitrification rate in the Pearl River estuary. There is a significant positive 12 correlation between ammonia and nitrite oxidizer abundances in the hypoxic waters of the estuary, 13 suggesting a possible coupling through metabolic interactions between them.
    [Show full text]
  • Enrichment and Physiological Characterization of a Novel Comammox Nitrospira Indicates Ammonium Inhibition of Complete Nitrifica
    The ISME Journal (2021) 15:1010–1024 https://doi.org/10.1038/s41396-020-00827-4 ARTICLE Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification 1,3 1 1,2 1,2 1 Dimitra Sakoula ● Hanna Koch ● Jeroen Frank ● Mike S. M. Jetten ● Maartje A. H. J. van Kessel ● Sebastian Lücker 1 Received: 5 June 2020 / Revised: 27 October 2020 / Accepted: 30 October 2020 / Published online: 13 November 2020 © The Author(s) 2020. This article is published with open access Abstract The recent discovery of bacteria within the genus Nitrospira capable of complete ammonia oxidation (comammox) demonstrated that the sequential oxidation of ammonia to nitrate via nitrite can also be performed within a single bacterial cell. Although comammox Nitrospira exhibit a wide distribution in natural and engineered ecosystems, information on their physiological properties is scarce due to the limited number of cultured representatives. Additionally, most available genomic information is derived from metagenomic sequencing and high-quality genomes of Nitrospira in general are 1234567890();,: 1234567890();,: limited. In this study, we obtained a high (90%) enrichment of a novel comammox species, tentatively named “Candidatus Nitrospira kreftii”, and performed a detailed genomic and physiological characterization. The complete genome of “Ca.N. kreftii” allowed reconstruction of its basic metabolic traits. Similar to Nitrospira inopinata, the enrichment culture exhibited a very high ammonia affinity (Km(app)_NH3 ≈ 0.040 ± 0.01 µM), but a higher nitrite affinity (Km(app)_NO2- = 12.5 ± 4.0 µM), indicating an adaptation to highly oligotrophic environments. Furthermore, we observed partial inhibition of ammonia oxidation at ammonium concentrations as low as 25 µM.
    [Show full text]
  • New York City Department of Environmental Protection Community Right-To-Know: List of Hazardous Substances
    New York City Department of Environmental Protection Community Right-to-Know: List of Hazardous Substances Updated: 12/2015 Definitions SARA = The federal Superfund Amendments and Reauthorization Act (enacted in 1986). Title III of SARA, known as the Emergency Planning and Community Right-to-Act, sets requirements for hazardous chemicals, improves the public’s access to information on chemical hazards in their community, and establishes reporting responsibilities for facilities that store, use, and/or release hazardous chemicals. RQ = Reportable Quantity. An amount entered in this column indicates the substance may be reportable under §304 of SARA Title III. Amount is in pounds, a "K" represents 1,000 pounds. An asterisk following the Reporting Quantity (i.e. 5000*) will indicate that reporting of releases is not required if the diameter of the pieces of the solid metal released is equal to or exceeds 100 micrometers (0.004 inches). TPQ = Threshold Planning Quantity. An amount entered in this column reads in pounds and indicates the substance is an Extremely Hazardous Substance (EHS), and may require reporting under sections 302, 304 & 312 of SARA Title III. A TPQ with a slash (/) indicates a "split" TPQ. The number to the left of the slash is the substance's TPQ only if the substance is present in the form of a fine powder (particle size less than 100 microns), molten or in solution, or reacts with water (NFPA rating = 2, 3 or 4). The TPQ is 10,000 lb if the substance is present in other forms. A star (*) in the 313 column= The substance is reportable under §313 of SARA Title III.
    [Show full text]