Fish Pass Functionality in Relation to the Dynamics of Hydrological Conditions in the Upper Course of the River Iskar (Case Study)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Whitefin” Gudgeon Romanogobio Cf. Belingi \(Teleostei: Cyprinidae\)
Ann. Limnol. - Int. J. Lim. 49 (2013) 319–326 Available online at: Ó EDP Sciences, 2013 www.limnology-journal.org DOI: 10.1051/limn/2013062 Rapid range expansion of the “whitefin” gudgeon Romanogobio cf. belingi (Teleostei: Cyprinidae) in a lowland tributary of the Vistula River (Southeastern Poland) Michał Nowak1*, Artur Klaczak1, Paweł Szczerbik1, Jan Mendel2 and Włodzimierz Popek1 1 Department of Ichthyobiology and Fisheries, University of Agriculture in Krako´w, Spiczakowa 6, 30-198 Krako´w, Poland 2 Department of Fish Ecology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Kveˇ tna´8, 603 65 Brno, Czech Republic Received 4 April 2013; Accepted 27 August 2013 Abstract – The “whitefin” gudgeon Romanogobio cf. belingi was recorded in the Nida River, a large lowland tributary of the upper Vistula (Southeastern Poland), for the first time in 2009. Since then, it has been caught during the periodical (three times per year) monitoring only sporadically. Conversely, in October and November 2012 R. cf. belingi was recorded frequently along an y60-km lowermost stretch of the Nida River. The abundance of this fish gradually increased downstream. This paper provides details of that phenomenon and discusses it in the context of the currently known distribution of this species. Key words: Faunistic / Gobioninae / ichthyofauna monitoring / population dynamics / rare species Introduction European gudgeons (genera: Gobio and Romanogobio) are among the most discussed groups of fishes. Their Rapid range expansions and colonizations are impor- diversity, taxonomy, identification and distributions tant ecological phenomena and in the case of biological are still under debate (e.g., Kottelat and Freyhof, 2007; invasions, have been extensively studied in recent years. -
Monroe County Soil & Water Conservation District Fish Program
Monroe County Soil & Water Conservation District Fish Program Catalog Inside Triploid Grass Carp………………….2 Fathead Minnows…....3 Channel Catfish……...4 Koi (no longer offered).…..5 Yellow Perch………...6 Largemouth Bass..…...7 Fish Stocking Program The Monroe County Soil and Water Conservation District’s fish program is a Rainbow Trout……….8 biannual event, offered in spring and summer each year. Harsh winters cause many fish kills in ponds throughout Monroe County, and the Soil and Water Conservation District offers this program to help restock ponds. The species Black Crappie………..9 typically available for stocking include, but are not limited to: Pumpkinseed……….10 Triploid grass carp (10-12”), Catfish (6”), Fathead minnows (1-1.5”), Yellow Perch (2-3" or 4-6”) and Largemouth Bass (2-3” or 4-6”) Barley Straw……......11 You will need to bring 20 gallons of pond water for every 6 Grass Carp, 30 Fish Habitat Spheres..12 Catfish, 30 Goldfish, 500 minnows, 100 Bass, or 150 Perch for a travel time of 30-45 minutes. Please Do NOT use tap water! Use pond water and be sure to bring a cover for the container(s) you’ll be using, so the water doesn’t splash and your fish can’t escape. Five gallon pails, old coolers, trash cans or other similar containers will work. Monroe County Soil and Water Conservation District 145 Paul Road, Building #5 Rochester, NY 14624 (585) 753-7380 Monroe County Soil & Water http://www.monroecountyswcd.org/ Conservation District Providing Today, Protecting Tomorrow This document has been produced to provide a summary of all the species that MCSWCD offers Fish Catalog Page 2 Triploid Grass Carp (Ctenopharyngodon idella) Photo courtesy of New York State Department of Conservation. -
Download This Article in PDF Format
Knowl. Manag. Aquat. Ecosyst. 2021, 422, 13 Knowledge & © L. Raguž et al., Published by EDP Sciences 2021 Management of Aquatic https://doi.org/10.1051/kmae/2021011 Ecosystems Journal fully supported by Office www.kmae-journal.org français de la biodiversité RESEARCH PAPER First look into the evolutionary history, phylogeographic and population genetic structure of the Danube barbel in Croatia Lucija Raguž1,*, Ivana Buj1, Zoran Marčić1, Vatroslav Veble1, Lucija Ivić1, Davor Zanella1, Sven Horvatić1, Perica Mustafić1, Marko Ćaleta2 and Marija Sabolić3 1 Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia 2 Faculty of Teacher Education, University of Zagreb, Savska cesta 77, Zagreb 10000, Croatia 3 Institute for Environment and Nature, Ministry of Economy and Sustainable Development, Radnička cesta 80, Zagreb 10000, Croatia Received: 19 November 2020 / Accepted: 17 February 2021 Abstract – The Danube barbel, Barbus balcanicus is small rheophilic freshwater fish, belonging to the genus Barbus which includes 23 species native to Europe. In Croatian watercourses, three members of the genus Barbus are found, B. balcanicus, B. barbus and B. plebejus, each occupying a specific ecological niche. This study examined cytochrome b (cyt b), a common genetic marker used to describe the structure and origin of fish populations to perform a phylogenetic reconstruction of the Danube barbel. Two methods of phylogenetic inference were used: maximum parsimony (MP) and maximum likelihood (ML), which yielded well supported trees of similar topology. The Median joining network (MJ) was generated and corroborated to show the divergence of three lineages of Barbus balcanicus on the Balkan Peninsula: Croatian, Serbian and Macedonian lineages that separated at the beginning of the Pleistocene. -
Conservation Elements
Turkish Journal of Zoology Turk J Zool (2019) 43: 215-223 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1711-52 Hucho hucho (Linnaeus, 1758): last natural viable population in the Eastern Carpathians – conservation elements 1, 2 3 4 Angela CURTEAN-BĂNĂDUC *, Saša MARIĆ , Guti GÁBOR , Alexander DIDENKO , 5 1, , Sonia REY PLANELLAS , Doru BĂNĂDUC * ** 1 “Lucian Blaga” University of Sibiu, Sibiu, Romania 2 University of Belgrade, Belgrade, Serbia 3 Danube Research Institute, Budapest, Hungary 4 Institute of Fisheries, Kiev, Ukraine 5 School of Natural Sciences, University of Stirling, Stirling, United Kingdom Received: 30.11.2017 Accepted/Published Online: 18.01.2019 Final Version: 01.03.2019 Abstract: There is great variation in the conservation status of the last habitats with long-term natural viable populations of the salmon species Hucho hucho in Maramureş Mountains Nature Park, Eastern Carpathians (Romania). According to the specific guidelines for Natura 2000, 42.11% are in good conservation status, 31.57% are of average status, and 26.32% are in a partially degraded condition. In this study area, 6 main risk elements were identified related to human impact on the environment: poaching, minor riverbed mor- phodynamic changes, liquid and solid natural flow disruption, habitat fragmentation leading to isolation of fish populations, organic and mining pollution, and destruction of riparian tree and shrub vegetation. All of them have contributed to the decrease of H. hucho distribution in the study area to about 50% of the previous local range. Individuals of this species were recorded in only 21 of the 370 sampling stations. -
Draft Carpathian Red List of Forest Habitats
CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) . -
Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire. -
Sastav Slatkovodne Ihtiofaune Rijeke Dunav U Hrvatskoj
Sastav slatkovodne ihtiofaune rijeke Dunav u Hrvatskoj Ištvanić, Karlo Undergraduate thesis / Završni rad 2020 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechical Sciences Osijek / Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet agrobiotehničkih znanosti Osijek Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:358525 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-10-07 Repository / Repozitorij: Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET AGROBIOTEHNIČKIH ZNANOSTI OSIJEK Karlo Ištvanić Preddiplomski sveučilišni studij Poljoprivreda Smjer Bilinogojstvo Sastav slatkovodne ihtiofaune rijeke Dunav u Hrvatskoj Završni rad Osijek, 2020. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET AGROBIOTEHNIČKIH ZNANOSTI OSIJEK Karlo Ištvanić Preddiplomski sveučilišni studij Poljoprivreda Smjer Bilinogojstvo Sastav slatkovodne ihtiofaune rijeke Dunav u Hrvatskoj Završni rad Povjerenstvo za ocjenu završnog rada: 1. izv. prof. dr. sc. Siniša Ozimec, mentor 2. doc. dr. sc. Dinko Jelkić 3. dr. sc. Marin Kovačić Osijek, 2020. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište Josipa Jurja Strossmayera u Osijeku Završni rad Fakultet agrobiotehničkih znanosti Osijek Preddiplomski sveučilišni studij Poljoprivreda, smjer Bilinogojstvo Karlo Ištvanić Sastav slatkovodne ihtiofaune rijeke Dunav u Hrvatskoj Sažetak: Rijeka Dunav u dijelu svog srednjeg toka protječe kroz Republiku Hrvatsku duljinom od 137,5 km. Analizirani su taksonomska raznolikost, sastav, ugroženost i zaštita faune slatkovodnih riba Dunava u Hrvatskoj. Sadašnja raznolikost obuhvaća 81 vrstu što čini 59 % poznate faune slatkovodnih riba Hrvatske, raspoređenih u 27 porodica i 13 redova. Najbrojnije prema broju vrsta su porodice: Leuciscidae, Percidae, Acipenseridae i Cyprinidae. -
Kyfishid[1].Pdf
Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people. -
Distribution Changes of Small Fishes in Streams of Missouri from The
Distribution Changes of Small Fishes in Streams of Missouri from the 1940s to the 1990s by MATTHEW R. WINSTON Missouri Department of Conservation, Columbia, MO 65201 February 2003 CONTENTS Page Abstract……………………………………………………………………………….. 8 Introduction…………………………………………………………………………… 10 Methods……………………………………………………………………………….. 17 The Data Used………………………………………………………………… 17 General Patterns in Species Change…………………………………………... 23 Conservation Status of Species……………………………………………….. 26 Results………………………………………………………………………………… 34 General Patterns in Species Change………………………………………….. 30 Conservation Status of Species……………………………………………….. 46 Discussion…………………………………………………………………………….. 63 General Patterns in Species Change………………………………………….. 53 Conservation Status of Species………………………………………………. 63 Acknowledgments……………………………………………………………………. 66 Literature Cited……………………………………………………………………….. 66 Appendix……………………………………………………………………………… 72 FIGURES 1. Distribution of samples by principal investigator…………………………. 20 2. Areas of greatest average decline…………………………………………. 33 3. Areas of greatest average expansion………………………………………. 34 4. The relationship between number of basins and ……………………….. 39 5. The distribution of for each reproductive group………………………... 40 2 6. The distribution of for each family……………………………………… 41 7. The distribution of for each trophic group……………...………………. 42 8. The distribution of for each faunal region………………………………. 43 9. The distribution of for each stream type………………………………… 44 10. The distribution of for each range edge…………………………………. 45 11. Modified -
Eureka, Topeka! (Shiner, That Is)
B 3 American Currents Vol. 40, No. 2 EUREKA, TOPEKA! (SHINER, THAT IS) Ray Katula Onalaska, WI One magnificent aspect of the fish-keeping hobby is that of the more common and well-known Red Shiner (Cypri- with all the biodiversity Mother Earth has to offer, there is nella lutrensis). Fins of the male Topeka Shiner can be cherry little danger of becoming jaded about it. An enlightening red with fin bases usually clear. Nuptial males display more surprise always seems to appear around the next bend, or red within the fins and a faint blue lateral stripe that replaces in the next stream or pet shop. After more than forty years the black one. They also have a rosy cheek. During peak col- of keeping and breeding North American native fishes, my oration, the fish’s whole side has a blue luminance. Nuptial enthusiasm has not diminished, and the Topeka Shiner (No- males—as in most minnow species—develop small breed- tropis topeka) is an endearing case in point. ing tubercles on the forehead (Figure 1). One last marking In 1996 NANFA member Konrad Schmidt sent me a worthy of mention is a small black wedge mark, or chevron, baker’s dozen of young-of-the-year Topeka Shiners, which located at the caudal fin base. Typical of many North Ameri- he caught in the Rock River in southwestern Minnesota. Up can minnow species, males can attain chromatic nuptial col- to that point, the only photographs and illustrations I had ors that fade to varying degrees outside the spawning sea- seen of Topeka Shiners showed a fair amount of red in their son. -
Teleostei: Cyprinidae), in the Upper Vistula Drainage (Southeast Poland)
Arch. Pol. Fish. (2011) 19: 37-49 DOI 10.2478/v10086-011-0005-8 RESEARCH ARTICLE Contributions to the morphological variation of the common gudgeon, Gobio gobio complex (Teleostei: Cyprinidae), in the upper Vistula drainage (southeast Poland) Micha³ Nowak, Jan Mendel, Pawe³ Szczerbik, Artur Klaczak, Tomasz Miko³ajczyk, Konrad Ozga, Barbara Fa³owska, W³odzimierz Popek Received – 09 November 2010/Accepted – 10 February 2011. Published online: 30 March 2011; ©Inland Fisheries Institute in Olsztyn, Poland Abstract. Recent molecular research indicates that several Introduction distinct species have been confused under the name Gobio gobio (L.); thus, comparative investigations of numerous local populations are urgently needed. The present study presents Gobioninae are a subfamily of the family Cyprinidae and discusses detailed morphometric characteristics of 82 comprising small, bottom-dwelling fishes of practi- individuals from the G. gobio complex of nine tributaries of cally no commercial importance (Kottelat and the upper Vistula River (southeast Poland) within the context Freyhof 2007, Mendel et al. 2008a, 2008b, Nowak et of the known variability of this species. The specimens al. 2008a). This is why they have long been disre- analyzed generally resemble G. gobio s. stricto in a number of garded as a subject of ichthyological investigations in morphometric and meristic characters. The results are rather consistent with previous literature data on Polish populations Poland, as well as in Europe in general. Nevertheless, of the “common gudgeon”; however, as long as molecular they have been investigated extensively by taxono- analyses are not available, precise identification is impossible. mists. It was Bãnãrescu (1961) who divided the ge- nus Gobio into the three subgenera, namely Gobio Keywords: biometrics, Gobioninae, ichthyofauna, sensu stricto, Romanogobio, and Rheogobio. -
Information Sheet on Ramsar Wetlands (RIS) – 2009 - 2012 Version
Designation date: 04/12/04 Ramsar Site no. 1410 Information Sheet on Ramsar Wetlands (RIS) – 2009 - 2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9 th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2 nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3 rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY . Béla Habarics – head of Landscape Protection Area DD MM YY Dr. Sarolta Ebesfalvi – nature conservation ranger Hortobágy National Park Directorate 4024 Debrecen, Sumen u. 2. Designation date Site Reference Number Tel.: +36 52/529 920, fax.: +36 52/529 940, e-mail: [email protected] 2.