Medusozoan Genomes Inform the Evolution of the Jellyfish Body Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita .............................................................................................................. -
Pupillary Response to Light in Three Species of Cubozoa (Box Jellyfish)
Plankton Benthos Res 15(2): 73–77, 2020 Plankton & Benthos Research © The Plankton Society of Japan Pupillary response to light in three species of Cubozoa (box jellyfish) JAMIE E. SEYMOUR* & EMILY P. O’HARA Australian Institute for Tropical Health and Medicine, James Cook University, 11 McGregor Road, Smithfield, Qld 4878, Australia Received 12 August 2019; Accepted 20 December 2019 Responsible Editor: Ryota Nakajima doi: 10.3800/pbr.15.73 Abstract: Pupillary response under varying conditions of bright light and darkness was compared in three species of Cubozoa with differing ecologies. Maximal and minimal pupil area in relation to total eye area was measured and the rate of change recorded. In Carukia barnesi, the rate of pupil constriction was faster and final constriction greater than in Chironex fleckeri, which itself showed faster and greater constriction than in Chiropsella bronzie. We suggest this allows for differing degrees of visual acuity between the species. We propose that these differences are correlated with variations in the environment which each of these species inhabit, with Ca. barnesi found fishing for larval fish in and around waters of structurally complex coral reefs, Ch. fleckeri regularly found acquiring fish in similarly complex mangrove habitats, while Ch. bronzie spends the majority of its time in the comparably less complex but more turbid environments of shallow sandy beaches where their food source of small shrimps is highly aggregated and less mobile. Key words: box jellyfish, cubozoan, pupillary mobility, vision invertebrates (Douglas et al. 2005, O’Connor et al. 2009), Introduction none exist directly comparing pupillary movement be- The primary function of pupil constriction and dilation tween species in relation to their habitat and lifestyle. -
The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions. -
Pdf) and Their Values Are Plotted Against Temperature in Fig
Vol. 510: 255–263, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 9 doi: 10.3354/meps10799 Mar Ecol Prog Ser Contribution to the Theme Section ‘Jellyfish blooms and ecological interactions’ FREEREE ACCESSCCESS Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita Zhilu Fu1, Masashi Shibata1, Ryosuke Makabe2, Hideki Ikeda1, Shin-ichi Uye1,* 1Graduate School of Biosphere Science, Hiroshima University, 4-4 Kagamiyama 1 Chome, Higashi-Hiroshima 739−8528, Japan 2Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki 986-8580, Japan ABSTRACT: Scyphozoan ephyrae need to start feeding before their endogenous nutritional reserves run out, and the success of feeding and growth is crucial to their recruitment into the medusa population. To evaluate starvation resistance in first-feeding ephyrae of the moon jellyfish Aurelia aurita s.l., we determined their point of no return (PNR50), i.e. days of starvation after which 50% of ephyrae die even if they then feed. PNR50 values were 33.8, 38.4 and 58.6 d at 15, 12 and 9°C, respectively. Before reaching PNR50, the ephyrae showed significant body size reduc- tion: ca. 30 and 50% decrease in disc diameter and carbon content, respectively. These PNR50 val- ues are nearly 1 order of magnitude longer than those of larval marine molluscs, crustaceans and fishes, which is attributable to the ephyra’s extremely low metabolic (i.e. respiration) rate relative to its copious carbon reserves. Such a strong endurance under prolonged starvation is likely an adaptive strategy for A. aurita ephyrae, the release of which is programmed to occur during the annual period of lowest temperatures, allowing them to cope with the concomitant seasonal food scarcity. -
A Review of Behavioural Observations on Aurelia Sp. Jellyfish
Neuroscience and Biobehavioral Reviews 35 (2011) 474–482 Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish David J. Albert Roscoe Bay Marine Biology Laboratory, 4534 W 3rd Avenue, Vancouver, British Columbia, Canada V6R 1N2 article info abstract Article history: Aurelia sp. (scyphozoa; Moon Jellies) are one of the most common and widely distributed species of jelly- Received 14 March 2010 fish. Their behaviours include swimming up in response to somatosensory stimulation, swimming down Received in revised form 30 May 2010 in response to low salinity, diving in response to turbulence, avoiding rock walls, forming aggregations, Accepted 3 June 2010 and horizontal directional swimming. These are not simple reflexes. They are species typical behaviours involving sequences of movements that are adjusted in response to the requirements of the situation and Keywords: that require sensory feedback during their execution. They require the existence of specialized sensory Aurelia sp receptors. The central nervous system of Aurelia sp. coordinates motor responses with sensory feedback, Behaviour Nervous system maintains a response long after the eliciting stimulus has disappeared, changes behaviour in response Sensory receptors to sensory input from specialized receptors or from patterns of sensory input, organizes somatosensory Scyphozoa input in a way that allows stimulus input from many parts of the body to elicit a similar response, and coordinates responding when stimuli are tending to elicit more than one response. While entirely differ- ent from that of most animals, the nervous system of Aurelia sp. -
Aurelia Aurita) and Evaluation of Their Tissues Using NMR-Based Metabolomics
ABSTRACT DOERR, MARY. The Development of Euthanasia Techniques for Moon Jellyfish (Aurelia aurita) and Evaluation of their Tissues Using NMR-Based Metabolomics. (Under the direction of Dr. Michael K Stoskopf). Wild jellyfish are known to have significant impacts on coastal food web ecology and water quality. Advances in aquarium engineering and captive breeding capabilities have increased the availability of these delicate invertebrates for research purposes, although challenges persist in the management of water quality, nutrition, and disease. Moon jellyfish (Aurelia aurita) are an ideal species for novel investigations into jellyfish physiology due to their cosmopolitan nature, and their shared traits with most species of scyphozoan jellyfish. Metabolomics, the study of the small molecules involved in the pathways of cellular metabolism, is a rapidly growing area of study with applications in medicine, disease management, and marine systems biology. NMR spectroscopy allows for the evaluation of the full spectrum of metabolites from any tissue or biofluid and has the additional advantage of allowing for the determination of molecular structure from these samples, which can lead to the discovery of new biomolecules. Using NMR-based metabolomics to investigate jellyfish has the potential to generate new insight into their physiology and to add to the existing knowledge base in the field of marine metabolomics. This research project first investigates suitable methods of euthanasia for moon jellyfish destined for NMR spectroscopy, and -
Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J. -
First Report of the Box Jellyfish Tripedalia Cystophora (Cubozoa
Marine Biodiversity Records, page 1 of 3. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S1755267211000133; Vol. 4; e54; 2011 Published online First report of the box jellyfish Tripedalia cystophora (Cubozoa: Tripedaliidae) in the continental USA, from Lake Wyman, Boca Raton, Florida evan r. orellana1 and allen g. collins2 1Gumbo Limbo Nature Centre, 1801 North Ocean Boulevard, Boca Raton, FL 33432, USA, 2NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA A male specimen of Tripedalia cystophora (Cubozoa: Tripedaliidae) was collected from Lake Wyman, Boca Raton, Florida, USA. This is the first report of this species from the continental United States and brings the total known number of cubozoan species living in this region to four. Lake Wyman is a natural lagoon/estuary ecosystem which is part of the Atlantic Intracoastal Waterway. The box jellyfish was found in shallow water around the roots of the red mangrove, Rhizophora mangle, where it was observed feeding on copepods attracted to light. This finding may indicate a local population in the waters of south Florida, USA, but an isolated occurrence cannot be ruled out. Keywords: Cubomedusae Submitted 5 May 2010; accepted 21 January 2011 INTRODUCTION MATERIALS AND METHODS Tripedalia cystophora Conant, 1897 is a box jellyfish in the Tripedalia cystophora was collected in Lake Wyman, Boca family Tripedaliidae of the order Carybdeida. Carybdeids Raton, Florida, on 27 September 2009 (26821′59.26′′N are easily identified by the presence of only one tentacle on 80804′16.66′′W). -
Moon Jelly (Aurelia Aurita)
Moon jelly (Aurelia aurita) Size: A moon jelly can range in size from 2 to 15 inches in diameter Range/Distribution: Moon jellies are found in coastal regions worldwide Appearance: An adult moon jelly is commonly identified by the appearance of 4 horseshoe shaped reproductive organs which are visible through their clear bell. The reproductive organs of the animal are located near the bottom of the stomach so when the jelly feeds the area around the gonads will take on the color of the prey. Moon jellies have small tentacles lining the bell and distinctive oral arms, which assist in feeding, draping from the center of the bell. Habitat: Jellies are found in water with temperatures ranging from 48 ْ -66 ْ F (but can with stand water temperatures between 21 ْ - 88 ْ F). These amazing invertebrates can even live in brackish water (a mixture of fresh and salt water); however, the bell will take on a flattened appearance when in areas of low salt concentrations. Prey: The moon jelly is a carnivorous animal which preys on small planktons such as larval crabs, shrimps and fish eggs. Although movement is mostly dictated by the currents, a moon jelly can move into areas abundant with prey by pulsing their bell. Although prey may be stung by the stinging cells (nematocysts) that line the tentacle, most become entangled in the mucous layer which covers the animal. Food is then moved along eight canals which deposit food into the stomach. Predators: Moon jellies are preyed on by sea turtles, shore birds, fish species and other jelly species. -
Journ Al of Re Search in Biology
Journal of Research in Biology ISSN No: Print: 2231 –6280; Online: 2231- 6299 An International Scientific Research Journal Original Research Notes on the occurrence of Porpita porpita (Blue button) from Pulicat Lagoon Authors: ABSTRACT: * Ravichandran Ramanibai , Sivalingam Govindan and Thamotharan Balakrishnan We spotted the presence of blue buttons washed ashore during the month of Institution: December 2013 in Pulicat lagoon. These rare sited organisms were observed during Unit of Aquatic Biodiversity, our regular faunal field visit along the Pulicat lagoon. Department of Zoology, University of Madras, Guindy campus, Chennai, Tamil Nadu -600 025, India. Corresponding author: Keywords: Ravichandran Ramanibai Hydrozoans, Porpita porpita, Pulicat lagoon Email Id: Article Citation: Ravichandran Ramanibai, Sivalingam Govindan and Thamotharan Balakrishnan Journal of Research in Biology Notes on the occurrence of Porpita porpita (Blue button) from Pulicat Lagoon Journal of Research in Biology (2014) 4(7): 1487-1490 Dates: Web Address: Received: 21 Jul 2014 Accepted: 19 Aug 2014 Published: 07 Nov 2014 http://jresearchbiology.com/ documents/RA0465.pdf This article is governed by the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/4.0), which gives permission for unrestricted use, non-commercial, distribution and reproduction in all medium, provided the original work is properly cited. 1487-1490 | JRB | 2014 | Vol 4 | No 7 Journal of Research in Biology An International Scientific Research Journal www.jresearchbiology.com Ramanibai et al., 2014 INTRODUCTION reproduction P. porpita is hard, slightly convex disc, Blue buttons were seen in Pulicat lagoon during golden brown, gas-filled float in the centre, blue, yellow the post-monsoon season of the year 2013. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa)
GBE Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa) Anna M. L. Klompen 1,*EhsanKayal 2,3 Allen G. Collins 2,4 andPaulynCartwright 1 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA Downloaded from https://academic.oup.com/gbe/article/13/6/evab081/6248095 by guest on 24 June 2021 3Sorbonne Universite, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France 4National Systematics Laboratory of NOAA’s Fisheries Service, Silver Spring, Maryland, USA *Corresponding author: E-mail: [email protected] Accepted: 19 April 2021 Abstract Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore- forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs.