Explaining Retrograde Motion of the Planets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Timeline 2 Geocentric Model
Ancient Astronomy Many ancient cultures were interested in the night sky • Calenders • Prediction of seasons • Navigation 1 Timeline Astronomy timeline • ∼ 3000 B.C. Stonehenge • 2136 B.C. First record of solar eclipse by Chinese astronomers • 613 B.C. First record of Halley’s comet by Zuo Zhuan (China) • ∼ 270 B.C. Aristarchus proposes Earth goes around Sun (not a popular idea at the time) • ∼ 240 B.C. Eratosthenes estimates Earth’s circumference • ∼ 130 B.C. Hipparchus develops first accurate star map (one of the first to use R.A. and Dec) 2 Geocentric model The Geocentric Model • Greek philosopher Aristotle (384-322 B.C.) • Uniform circular motion • Earth at center of Universe Retrograde Motion • General motion of planets east- ward • Short periods of westward motion of planets • Then continuation eastward How did the early Greek philosophers make retrograde motion consistent with uniform circular motion? 3 Ptolemy Ptolemy’s Geocentric Model • Planet moves around a small circle called an epicycle • Center of epicycle moves along a larger cir- cle called a deferent • Center of deferent is at center of Earth (sort of) Ptolemy’s Geocentric Model • Ptolemy invented the device called the eccentric • The eccentric is the center of the deferent • Sometimes the eccentric was slightly off center from the center of the Earth Ptolemy’s Geocentric Model • Uniform circular motion could not account for speed of the planets thus Ptolemy used a device called the equant • The equant was placed the same distance from the eccentric as the Earth, but on the -
Aquarius Aries Pisces Taurus
Zodiac Constellation Cards Aquarius Pisces January 21 – February 20 – February 19 March 20 Aries Taurus March 21 – April 21 – April 20 May 21 Zodiac Constellation Cards Gemini Cancer May 22 – June 22 – June 21 July 22 Leo Virgo July 23 – August 23 – August 22 September 23 Zodiac Constellation Cards Libra Scorpio September 24 – October 23 – October 22 November 22 Sagittarius Capricorn November 23 – December 23 – December 22 January 20 Zodiac Constellations There are 12 zodiac constellations that form a belt around the earth. This belt is considered special because it is where the sun, the moon, and the planets all move. The word zodiac means “circle of figures” or “circle of life”. As the earth revolves around the sun, different parts of the sky become visible. Each month, one of the 12 constellations show up above the horizon in the east and disappears below the horizon in the west. If you are born under a particular sign, the constellation it is named for can’t be seen at night. Instead, the sun is passing through it around that time of year making it a daytime constellation that you can’t see! Aquarius Aries Cancer Capricorn Gemini Leo January 21 – March 21 – June 22 – December 23 – May 22 – July 23 – February 19 April 20 July 22 January 20 June 21 August 22 Libra Pisces Sagittarius Scorpio Taurus Virgo September 24 – February 20 – November 23 – October 23 – April 21 – August 23 – October 22 March 20 December 22 November 22 May 21 September 23 1. Why is the belt that the constellations form around the earth special? 2. -
Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results. -
Planet Positions: 1 Planet Positions
Planet Positions: 1 Planet Positions As the planets orbit the Sun, they move around the celestial sphere, staying close to the plane of the ecliptic. As seen from the Earth, the angle between the Sun and a planet -- called the elongation -- constantly changes. We can identify a few special configurations of the planets -- those positions where the elongation is particularly noteworthy. The inferior planets -- those which orbit closer INFERIOR PLANETS to the Sun than Earth does -- have configurations as shown: SC At both superior conjunction (SC) and inferior conjunction (IC), the planet is in line with the Earth and Sun and has an elongation of 0°. At greatest elongation, the planet reaches its IC maximum separation from the Sun, a value GEE GWE dependent on the size of the planet's orbit. At greatest eastern elongation (GEE), the planet lies east of the Sun and trails it across the sky, while at greatest western elongation (GWE), the planet lies west of the Sun, leading it across the sky. Best viewing for inferior planets is generally at greatest elongation, when the planet is as far from SUPERIOR PLANETS the Sun as it can get and thus in the darkest sky possible. C The superior planets -- those orbiting outside of Earth's orbit -- have configurations as shown: A planet at conjunction (C) is lined up with the Sun and has an elongation of 0°, while a planet at opposition (O) lies in the opposite direction from the Sun, at an elongation of 180°. EQ WQ Planets at quadrature have elongations of 90°. -
History of Astronomy
History of Astronomy © 2005 Pearson Education Inc., publishing as Addison-Wesley Ancient Astronomy What did ancient civilizations use astronomy for? • daily timekeeping • tracking the seasons and calendar • monitoring lunar cycles • monitoring planets and stars • predicting eclipses • and more… The sky was a map, a clock , a calendar, and© 2005a Pearsonbook Education of Inc.,stories publishing as Addison-Wesley Constellations From H.A. Rey’s book The Stars Not All Constellations are “Connect the Dots”… Australian Aboriginal astronomers made figures out of the dark clouds in the Milky Way – “The emu in the sky”. What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day The Reason for Seasons the Earth’s orbit around the Sun year © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Patterns in the Sky Motions in the Sky The Circling Sky day the rotation of the Earth about its axis The Reason for Seasons year the Earth’s orbit around the Sun Precession of the Earth’s Axis the wobbling of Earth’s axis The Moon, Our Constant Companion month the Moon’s orbit around the Earth © 2005 Pearson Education Inc., publishing as Addison-Wesley What We See When We Look Up Motions in the Sky The Circling Sky the rotation of the Earth about its axis day The Reason for Seasons the Earth’s orbit around the Sun year The Moon, Our Constant Companion month the Moon’s orbit around the Earth The Ancient Mystery of the Planets the various planets’ orbits around the Sun week © 2005 Pearson Education Inc., publishing as Addison-Wesley Days of week were named for Sun, Moon, and visible planets © 2005 Pearson Education Inc., publishing as Addison-Wesley Swaziland: Lemombo bone from ~35,000 B.C. -
The Zodiac: Comparison of the Ancient Greek Mythology and the Popular Romanian Beliefs
THE ZODIAC: COMPARISON OF THE ANCIENT GREEK MYTHOLOGY AND THE POPULAR ROMANIAN BELIEFS DOINA IONESCU *, FLORA ROVITHIS ** , ELENI ROVITHIS-LIVANIOU *** Abstract : This paper intends to draw a comparison between the ancient Greek Mythology and the Romanian folk beliefs for the Zodiac. So, after giving general information for the Zodiac, each one of the 12 zodiac signs is described. Besides, information is given for a few astronomical subjects of special interest, together with Romanian people believe and the description of Greek myths concerning them. Thus, after a thorough examination it is realized that: a) The Greek mythology offers an explanation for the consecration of each Zodiac sign, and even if this seems hyperbolic in almost most of the cases it was a solution for things not easily understood at that time; b) All these passed to the Romanians and influenced them a lot firstly by the ancient Greeks who had built colonies in the present Romania coasts as well as via commerce, and later via the Romans, and c) The Romanian beliefs for the Zodiac is also connected to their deep Orthodox religious character, with some references also to their history. Finally, a general discussion is made and some agricultural and navigator suggestions connected to Pleiades and Hyades are referred, too. Keywords : Zodiac, Greek, mythology, tradition, religion. PROLOGUE One of their first thoughts, or questions asked, by the primitive people had possibly to do with sky and stars because, when during the night it was very dark, all these lights above had certainly arose their interest. So, many ancient civilizations observed the stars as well as their movements in the sky. -
Mid-Term Exam 1
Astronomy 101 16 September, 2016 Introduction to Astronomy: The Solar System Mid-term Exam 1 Practice Version Name (written legibly): ______________________________________ Honor Pledge: On my honor, I have neither given nor received unauthorized aid on this examination. Signature: ___________________________________ Student PID: ______________________ Instructions: On the scannable answer sheet (when you’re taking the real version): ● Fill in your name (last name, then first name) and ID number. ● Identify the form number with the last column of the sequence number block. ● Answer all 40 questions using a number 2 pencil. In addition: ● Do not open your exam until instructed to do so. ● Be sure to also answer each question in the blanks provided on this exam sheet. ● The exam ends at 1:10. ● When done, raise your hand and we will collect your exam. ● No one may leave between 12:55 and 1:10. And of course: ● You may not use any notes, texts, calculators or communications devices. ● All work must be your own. Score: _______ out of 40. Useful equations: p2 ∝ a3 F = m a 2 F = G m1 m2 / r Pick the best answer to each question. _____ 1. The influence of Muslim science can be seen in ... a. the names of many stars. b. technical words such as altitude and azimuth. c. the number zero. d. centuries of excellent observational records. e. All of the above. _____ 2. How was Pluto discovered? a. By predicting its location based on irregularities in the orbit of Uranus. b. By predicting its location based on irregularities in the orbit of Neptune. -
Earth-Centred Universe
Earth-centred Universe The fixed stars appear on the celestial sphere Earth rotates in one sidereal day The solar day is longer by about 4 minutes → scattered sunlight obscures the stars by day The constellations are historical → learn to recognise: Ursa Major, Ursa Minor, Cassiopeia, Pegasus, Auriga, Gemini, Orion, Taurus Sun’s Motion in the Sky The Sun moves West to East against the background of Stars Stars Stars stars Us Us Us Sun Sun Sun z z z Start 1 sidereal day later 1 solar day later Compared to the stars, the Sun takes on average 3 min 56.5 sec extra to go round once The Sun does not travel quite at a constant speed, making the actual length of a solar day vary throughout the year Pleiades Stars near the Sun Sun Above the atmosphere: stars seen near the Sun by the SOHO probe Shield Sun in Taurus Image: Hyades http://sohowww.nascom.nasa.g ov//data/realtime/javagif/gifs/20 070525_0042_c3.gif Constellations Figures courtesy: K & K From The Beauty of the Heavens by C. F. Blunt (1842) The Celestial Sphere The celestial sphere rotates anti-clockwise looking north → Its fixed points are the north celestial pole and the south celestial pole All the stars on the celestial equator are above the Earth’s equator How high in the sky is the pole star? It is as high as your latitude on the Earth Motion of the Sky (animated ) Courtesy: K & K Pole Star above the Horizon To north celestial pole Zenith The latitude of Northern horizon Aberdeen is the angle at 57º the centre of the Earth A Earth shown in the diagram as 57° 57º Equator Centre The pole star is the same angle above the northern horizon as your latitude. -
The Opposition and Tilt Effects of Saturn's Rings from HST Observations
The opposition and tilt effects of Saturn’s rings from HST observations Heikki Salo, Richard G. French To cite this version: Heikki Salo, Richard G. French. The opposition and tilt effects of Saturn’s rings from HST observa- tions. Icarus, Elsevier, 2010, 210 (2), pp.785. 10.1016/j.icarus.2010.07.002. hal-00693815 HAL Id: hal-00693815 https://hal.archives-ouvertes.fr/hal-00693815 Submitted on 3 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript The opposition and tilt effects of Saturn’s rings from HST observations Heikki Salo, Richard G. French PII: S0019-1035(10)00274-5 DOI: 10.1016/j.icarus.2010.07.002 Reference: YICAR 9498 To appear in: Icarus Received Date: 30 March 2009 Revised Date: 2 July 2010 Accepted Date: 2 July 2010 Please cite this article as: Salo, H., French, R.G., The opposition and tilt effects of Saturn’s rings from HST observations, Icarus (2010), doi: 10.1016/j.icarus.2010.07.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. -
Ptolemy's Almagest
Ptolemy’s Almagest: Fact and Fiction Richard Fitzpatrick Department of Physics, UT Austin Euclid’s Elements and Ptolemy’s Almagest • Ancient Greece -> Two major scientific works: Euclid’s Elements and Ptolemy’s “Almagest”. • Elements -> Compendium of mathematical theorems concerning geometry, proportion, number theory. Still highly regarded. • Almagest -> Comprehensive treatise on ancient Greek astronomy. (Almost) universally disparaged. Popular Modern Criticisms of Ptolemy’s Almagest • Ptolemy’s approach shackled by Aristotelian philosophy -> Earth stationary; celestial bodies move uniformly around circular orbits. • Mental shackles lead directly to introduction of epicycle as kludge to explain retrograde motion without having to admit that Earth moves. • Ptolemy’s model inaccurate. Lead later astronomers to add more and more epicycles to obtain better agreement with observations. • Final model hopelessly unwieldy. Essentially collapsed under own weight, leaving field clear for Copernicus. Geocentric Orbit of Sun SS Sun VE − vernal equinox SPRING SS − summer solstice AE − autumn equinox WS − winter solstice SUMMER93.6 92.8 Earth AE VE AUTUMN89.9 88.9 WINTER WS Successive passages though VE every 365.24 days Geocentric Orbit of Mars Mars E retrograde station direct station W opposition retrograde motion Earth Period between successive oppositions: 780 (+29/−16) days Period between stations and opposition: 36 (+6/−6) days Angular extent of retrograde arc: 15.5 (+3/−5) degrees Immovability of Earth • By time of Aristotle, ancient Greeks knew that Earth is spherical. Also, had good estimate of its radius. • Ancient Greeks calculated that if Earth rotates once every 24 hours then person standing on equator moves west to east at about 1000 mph. -
Astronomy and Astrology
Astronomy and Astrology Philippe Zarka CNRS & Observatoire de Paris, France Daniel Kunth CNRS- I.A.P, France 1. Introduction : what is astrology ? 2. Astrology & Society 3. Astrology & Astronomy 4. Astrology & Science 5. Conclusion : the success of Astrology and the role of Science • References 1. Introduction : what is astrology ? 2. Astrology & Society 3. Astrology & Astronomy 4. Astrology & Science 5. Conclusion : the success of Astrology and the role of Science • References The influence of celestial bodies on Earth has several obvious manifestations : life on Earth depends on the Sun, seasons are linked to its position in the sky (due to the non–perpendicularity of the Earth’s rotation axis with respect to the ecliptic plane), … Seasons … ocean tides are controlled by the position of the Moon (via its differential gravitation) and of the Sun, and eclipses are due to Sun–Moon–Earth alignments. Solar eclipse High/Low tides Astrology extrapolates these factual influences by postulating that the positions of the Sun, Moon and 8 planets* other than Earth (hereafter the « luminars ») with respect to the sky background, as well as with respect to each other, influence terrestrial events and human psychology and destiny. *wandering celestial bodies Apparent trajectory of Mars as seen from Earth, and explanation The position of luminars is considered - relative to the tropical zodiac, defined by Hipparchus* : 12 « signs » dividing in 30° sectors the band of constellations upon which the motions of the Sun and planets are projected during the year, with an arbitrary origin at the vernal – spring – equinox (γ), and - relative to the « houses », a local reference frame dividing the local sky in 12 sectors. -
Summer ASTRONOMICAL CALENDAR
2020 Buhl Planetarium & Observatory ASTRONOMICAL CALENDAR Summer JUNE 2020 1 Mon M13 globular cluster well-placed for observation (Use telescope in Hercules) 3 Wed Mercury at highest point in evening sky (Look west-northwest at sunset) 5 Fri Full Moon (Strawberry Moon) 9 Tues Moon within 3 degrees of both Jupiter and Saturn (Look south before dawn) 13 Sat Moon within 3 degrees of Mars (Look southeast before dawn) Moon at last quarter phase 20 Sat Summer solstice 21 Sun New Moon 27 Sat Bootid meteor shower peak (Best displays soon after dusk) 28 Sun Moon at first quarter phase JULY 2020 5 Sun Full Moon (Buck Moon) Penumbral lunar eclipse (Look south midnight into Monday) Moon within 2 degrees of Jupiter (Look south midnight into Monday) 6 Mon Moon within 3 degrees of Saturn (Look southwest before dawn) 8 Wed Venus at greatest brightness (Look east at dawn) 11 Sat Moon within 2 degrees of Mars (Look south before dawn) 12 Sun Moon at last quarter phase 14 Tues Jupiter at opposition (Look south midnight into Wednesday) 17 Fri Moon just over 3 degrees from Venus (Look east before dawn) 20 Mon New Moon; Saturn at opposition (Look south midnight into Tuesday) 27 Mon Moon at first quarter phase 28 Tues Piscis Austrinid meteor shower peak (Best displays before dawn) 29 Wed Southern Delta Aquariid and Alpha Capricornid meteor showers peak AUGUST 2020 1 Sat Moon within 2 degrees of Jupiter (Look southeast after dusk) 2 Sun Moon within 3 degrees of Saturn (Look southeast after dusk) 3 Mon Full Moon (Sturgeon Moon) 9 Sun Conjunction of the Moon and