Climate- and Human-Induced Vegetation Changes in Northwestern Turkey and the Southern Levant Since the Last Glacial

Total Page:16

File Type:pdf, Size:1020Kb

Climate- and Human-Induced Vegetation Changes in Northwestern Turkey and the Southern Levant Since the Last Glacial Climate- and Human-Induced Vegetation Changes in Northwestern Turkey and the Southern Levant since the Last Glacial Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andrea Miebach aus Bergisch Gladbach Bonn, 2016 Angefertigt mit Genehmigung der Mathematisch Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Thomas Litt 2. Gutachter: Prof. Dr. Dietmar Quandt Tag der Promotion: 27.01.2017 Erscheinungsjahr: 2017 Contents 5 Contents Summary ................................................................................................................................................ 8 1 General Introduction 1.1 Background ....................................................................................................................... 10 1.2 Current state of knowledge ............................................................................................... 12 1.3 Aim and structure of this thesis ........................................................................................ 16 1.4 References ......................................................................................................................... 19 2 Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial 2.1 Abstract ............................................................................................................................. 27 2.2 Introduction ....................................................................................................................... 27 2.3 Study area ......................................................................................................................... 28 2.3.1 Regional setting ...................................................................................................... 28 2.3.2 Current climate ....................................................................................................... 29 2.3.3 Current vegetation .................................................................................................. 30 2.4 Material and methods ........................................................................................................ 32 2.4.1 Core setting, composite profile, and age-depth model ........................................... 32 2.4.2 Palynological analyses ............................................................................................ 33 2.5 Results and discussion ...................................................................................................... 34 2.5.1 MIS 3-2 transition: ca. 31.1–28.4 ka cal BP (LPAZ 8) .......................................... 34 2.5.2 Pre-LGM and LGM: ca. 28.4–18.4 ka cal BP (LPAZ 7) ....................................... 38 2.5.3 Post-LGM: ca. 18.4–15 ka cal BP (LPAZ 6).......................................................... 40 2.5.4 Lateglacial: ca. 15–12.1 ka cal BP (LPAZ 5) ......................................................... 41 2.5.5 Early Holocene: ca. 12.1–9 ka cal BP (LPAZ 4) .................................................... 43 2.5.6 Mid-Holocene: ca. 9–3.5 ka cal BP (LPAZ 3) ....................................................... 44 2.5.7 Late Bronze Age to Classical Period: ca. 3.5–2.2 ka cal BP (LPAZ 2) ................. 48 2.5.8 Hellenistic Period to Byzantine Period: ca. 2.2–0.6 ka cal BP (LPAZ 1) .............. 49 2.6 Conclusions ....................................................................................................................... 49 2.7 Data availability ................................................................................................................ 50 2.8 Acknowledgements ........................................................................................................... 50 2.9 References ......................................................................................................................... 51 2.10 Supplementary material .................................................................................................... 58 6 Contents 3 Vegetation and climate during the Last Glacial high stand (ca. 28–22 ka BP) of the Sea of Galilee, northern Israel 3.1 Abstract ............................................................................................................................. 61 3.2 Introduction ....................................................................................................................... 61 3.3 Regional setting ................................................................................................................ 63 3.4 Material and methods ........................................................................................................ 65 3.4.1 Coring campaign .................................................................................................... 65 3.4.2 Radiocarbon dating and age-depth model .............................................................. 65 3.4.3 Palynological analyses ............................................................................................ 65 3.5 Results and discussion ...................................................................................................... 67 3.5.1 Chronology ............................................................................................................. 67 3.5.2 Vegetation and climate ........................................................................................... 68 3.6 Conclusions ....................................................................................................................... 74 3.7 Acknowledgements ........................................................................................................... 74 3.8 References ......................................................................................................................... 74 4 Last Glacial and early Holocene vegetation, climate, and fire history of the Dead Sea region inferred from palynological analyses 4.1 Abstract ............................................................................................................................. 80 4.2 Introduction ....................................................................................................................... 80 4.3 Study area ......................................................................................................................... 82 4.3.1 Dead Sea ................................................................................................................. 82 4.3.2 Climate and vegetation ........................................................................................... 84 4.4 Material and methods ........................................................................................................ 85 4.5 Results and discussion ...................................................................................................... 87 4.5.1 Pollen zonation and pollen concentration ............................................................... 87 4.5.2 Vegetation history .................................................................................................. 90 4.5.3 Vegetation gradient during MIS 2 .......................................................................... 97 4.5.4 Fire history .............................................................................................................. 98 4.5.5 Freshwater and erosion indicators ........................................................................ 101 4.6 Conclusions and future perspectives ............................................................................... 101 4.7 Acknowledgements ......................................................................................................... 103 4.8 References ....................................................................................................................... 104 Contents 7 5 Synthesis 5.1 Kind and magnitude of long-term environmental changes in northwestern Turkey and the southern Levant since the Last Glacial............................................................... 112 5.2 Detection of rapid vegetation and climate changes in northwestern Turkey and the southern Levant during the Last Glacial and Holocene .................................................. 115 5.3 Vegetation and climate gradients in the southern Levant during MIS 2 ......................... 118 5.4 Detection and timing of human influences on the vegetation in northwestern Turkey and the southern Levant during the Holocene ................................................................ 119 5.5 Future perspectives ......................................................................................................... 120 5.6 References ....................................................................................................................... 122 List of figures ..................................................................................................................................... 128 List of tables ....................................................................................................................................... 131 Acknowledgments .............................................................................................................................
Recommended publications
  • Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity
    Review Living in Drylands: Functional Adaptations of Trees and Shrubs to Cope with High Temperatures and Water Scarcity José Javier Peguero-Pina 1,2,* , Alberto Vilagrosa 3 , David Alonso-Forn 1 , Juan Pedro Ferrio 1,4 , Domingo Sancho-Knapik 1,2 and Eustaquio Gil-Pelegrín 1 1 Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; [email protected] (D.A.-F.); [email protected] (J.P.F.); [email protected] (D.S.-K.); [email protected] (E.G.-P.) 2 Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain 3 Mediterranean Center for Environmental Studies (Fundación CEAM), Joint Research Unit University of Alicante—CEAM, Univ. Alicante, PO Box 99, 03080 Alicante, Spain; [email protected] 4 Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain * Correspondence: [email protected]; Tel.: +34-976-716-974 Received: 5 August 2020; Accepted: 22 September 2020; Published: 23 September 2020 Abstract: Plant functioning and survival in drylands are affected by the combination of high solar radiation, high temperatures, low relative humidity, and the scarcity of available water. Many ecophysiological studies have dealt with the adaptation of plants to cope with these stresses in hot deserts, which are the territories that have better evoked the idea of a dryland. Nevertheless, drylands can also be found in some other areas of the Earth that are under the Mediterranean-type climates, which imposes a strong aridity during summer. In this review, plant species from hot deserts and Mediterranean-type climates serve as examples for describing and analyzing the different responses of trees and shrubs to aridity in drylands, with special emphasis on the structural and functional adaptations of plants to avoid the negative effects of high temperatures under drought conditions.
    [Show full text]
  • Conservation Assessment for the Bigleaf Snowbell (Styrax Grandifolius Ait.)
    Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Steven R. Hill, Ph.D. Division of Biodiversity and Ecological Entomology Biotic Surveys and Monitoring Section 1816 South Oak Street Champaign, Illinois 61820 Prepared for the U.S.D.A. Forest Service, Eastern Region (Region 9), Shawnee and Hoosier National Forests INHS Technical Report 2007 (65) Date of Issue: 17 December 2007 Cover photo: Styrax grandifolius Ait., from the website: In Bloom – A Monthly Record of Plants in Alabama; Landscape Horticulture at Auburn University, Auburn, Alabama. http://www.ag.auburn.edu/hort/landscape/inbloomapril99.html This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. 2 Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Table of Contents
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • Styrax Japonicus Japanese Snowbell1 Edward F
    Fact Sheet ST-605 October 1994 Styrax japonicus Japanese Snowbell1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Japanese Snowbell is a small deciduous tree that slowly grows from 20 to 30 feet in height and has rounded canopy with a horizontal branching pattern (Fig. 1). With lower branches removed, it forms a more vase-shaped patio-sized shade tree. The smooth, attractive bark has orange-brown interlacing fissures adding winter interest to any landscape. The white, bell-shaped, drooping flower clusters of Japanese Snowbell are quite showy in May to June. GENERAL INFORMATION Scientific name: Styrax japonicus Pronunciation: STY-racks juh-PAWN-ih-kuss Common name(s): Japanese Snowbell Figure 1. Middle-aged Japanese Snowbell. Family: Styracaceae USDA hardiness zones: 6 through 8A (Fig. 2) DESCRIPTION Origin: not native to North America Uses: container or above-ground planter; large Height: 20 to 30 feet parking lot islands (> 200 square feet in size); wide Spread: 15 to 25 feet tree lawns (>6 feet wide); medium-sized parking lot Crown uniformity: symmetrical canopy with a islands (100-200 square feet in size); medium-sized regular (or smooth) outline, and individuals have more tree lawns (4-6 feet wide); recommended for buffer or less identical crown forms strips around parking lots or for median strip plantings Crown shape: round; vase shape in the highway; near a deck or patio; trainable as a Crown density: moderate standard; small parking lot islands (< 100 square feet Growth rate: slow in size); narrow tree lawns (3-4 feet wide); specimen; Texture: medium sidewalk cutout (tree pit); residential street tree; no proven urban tolerance Availability: grown in small quantities by a small number of nurseries 1.
    [Show full text]
  • The Herb Society of America Essential Facts for Spicebush Lindera Benzoin
    The Herb Society of America Essential Facts for Spicebush Lindera benzoin Family: Lauraceae Latin Name: Lindera benzoin Common Name: spicebush Growth: Perennial shrub, 3 to 9 feet tall, yellow flowers Hardiness: Zone 4b-9a Light: Partial Shade Soil: Rich, acidic to basic soil Water: Mesic, moderately moist Use: Tea, flavoring, medicinal Lindera benzoin fruit Propagation: Seed, clonal via rhizome sprouting, cuttings Photo Wikimedia Commons History Spicebush had multiple medicinal uses Culture In 1783, Carl Peter Thunberg honored by Creek, Cherokee, Rappahannock, Spicebush is primarily an understory Johann Linder (1676-1724), a Swedish Mohegan and Chippewa tribes, who also species found in the wild in open forests botanist and physician, by naming the used the plant to make a beverage and and along forest edges in rich, moder- genus Lindera in honor of him. The to flavor game. It has little commercial ately moist soil and can also be found specific epithetbenzoin is an adaptation value now and can be hard to find in along stream banks. It has a wide grow- of the Middle French benjoin (from nurseries for landscape use. ing range across the country, subject to Arabic luban jawi) literally “Java Frank- winter kill only at the northern extreme incense” and refers to an aromatic of its range. This is an excellent landscape balsamic resin obtained from several Description shrub with multiple season interest. It species of trees in the genus Styrax. In the same family with other aromatic is most spectacular in group plantings shrubs (Laurus nobilis, Cinnamomum The common name for bothLindera spp., Persea spp., and Sassafras spp.) benzoin var.
    [Show full text]
  • 1. STYRAX Linnaeus, Sp. Pl. 1: 444. 1753. 安息香属 an Xi Xiang Shu Cyrta Loureiro
    Flora of China 15: 253–263. 1996. 1. STYRAX Linnaeus, Sp. Pl. 1: 444. 1753. 安息香属 an xi xiang shu Cyrta Loureiro. Trees or shrubs, stellate pubescent or scaly, rarely glabrous. Leaves usually alternate. Inflorescences axillary or terminal, racemes, panicles, or cymes, sometimes 1-flowered or in several-flowered fascicles; bracteoles small, early deciduous. Flowers bisexual. Calyx cupular, 5-toothed, rarely truncate or 2–6-lobed. Corolla campanulate; lobes 5(–7), imbricate or valvate. Stamens (8–)10(–13), equal or rarely unequal in length; filaments flattened, free, sometimes basally adnate to corolla; anthers oblong. Ovary superior, 3-locular when young, becoming 1-locular; ovules 1–4 per locule; placentation parietal. Style subulate or fili- form; stigma capitate or 3-lobed. Fruit indehiscent or 3-valved dehiscent, exocarp fleshy to dry. Seeds 1(or 2); seed coat almost bony, with a large basal hilum; endosperm fleshy or almost bony; embryo straight. About 130 species: E Asia, North and South America, Mediterranean; 31 species in China. 1a. Corolla lobe margin usually narrowly involute, valvate or induplicate. 2a. Calyx and pedicel glabrous .................................................................................................................... 19. S. wuyuanensis 2b. Calyx and pedicel densely scaly or stellate pubescent. 3a. Leaf blade abaxially densely covered with silvery gray or brownish glossy scales ......................... 20. S. argentifolius 3b. Leaf blade abaxially glabrous or stellate tomentose. 4a. Leaf blade abaxially densely stellate tomentose. 5a. Petiole 1–3 mm; leaf blade abaxially densely grayish stellate tomentose, tertiary veins reticulate; fruit obovoid, ca. 6 mm in diam. ................................................................... 21. S. calvescens 5b. Petiole 10–30 mm; leaf blade abaxially densely brown or browish stellate tomentose, tertiary veins subparallel; fruit ovoid-globose, globose, or subglobose, 10–22 mm in diam.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • Article Some Cryptognathid Mites (Acari: Cryptognathidae)
    Persian Journal of Acarology, Vol. 2, No. 3, pp. 487–502. Article Some cryptognathid mites (Acari: Cryptognathidae) from Kütahya Province (Turkey) İsmail Uluçay1* & Kamil Koç2 1 Hakkari University, Yüksekova Vocational School, Hakkari, Turkey; E-mail: iulucay @gmail.com 2 Celal Bayar University, Faculty of Sciences and Arts, Department of Biology, Manisa, Turkey. E-mail: [email protected] * Corresponding Author Abstract Six cryptognathid mites were collected from Kütahya Province. Of these, three species belong to the genus Cryptognathus Kramer, 1879 and three species to the genus Favognathus Luxton, 1973. A new species Cryptoganathus kutahyaensis sp. nov., and the male of Favognathus cucurbita Berlese, 1917, from Turkey, are described and illustrated. Keys to all the species of the genus Cryptognathus and the Favognathus species of the Kütahya Province are provided. Key words: Acari, Cryptognathidae, Cryptognathus kutahyaensis sp. nov., new species, Turkey. Introduction Cryptognathids are small, scarlet-red or orange mites, their measurments are from 300 to 400 µm in length. The body is oval and lacks a suture between the propodosoma and the hysterosoma. The dorsal shield is reticulate or punctate (Baker & Wharton 1952; Krisper & Schneider 1998; Luxton 1993). Their mouth parts are often highly protruding (Luxton 1973). Members of the family are generally collected from soil, grass-covered soil, litter, mosses and lichens and they feed on algae, mosses and fungi (Koç & Ayyıldız 1998; Doğan & Ayyıldız 2004; Doğan 2008; Doğan & Dönel 2010; Dönel & Doğan 2011; Luxton 1993; Swift 1996; Swift & Goff 2001). Cryptognathidae contains three genera: Cryptognathus Kramer, 1879, Favognathus Luxton, 1973 and Cryptofavognathus Doğan & Dönel, 2010. Nineteen species of genus Cryptognathus Kramer, 1879 have been so far recorded in the world and four of them are known from Turkey, namely, C.
    [Show full text]
  • Halesia Diptera Two-Winged Silverbell
    Halesia diptera J. Ellis Two-Winged Silverbell (Carlomohria diptera, Mohria diptera, Mohrodendron dipterum) Other Common Names: Cowlicks, Silver Bell, Snowbell, Snowdrop Tree, Two-Winged Silver Bell. Family: Styracaceae (Halesiaceae). Cold Hardiness: Trees are useful in USDA hardiness zones 7 to 9. Foliage: Alternate, deciduous, simple, 3O to 4O long, elliptic to obovate leaves have broadly acute, cuneate or nearly rounded bases, shallowly serrated margins, and acuminate tips; pinnate veins are lightly impressed above and raised beneath; new growth is pubescent, but this is largely lost as leaves mature; summer foliage is medium to dark green, while fall colors are yellow-green to yellow. Flower: Glistening white, inverted, elongated, bell-shaped, four-petal, perfect, pendent flowers hang beneath the previous season's twigs in numerous small clusters during spring; numerous yellow stamens hang in the flower with a single distended white pistil; flowers are particularly attractive when viewed from beneath. Fruit: Two-Winged Silverbell has a small, hard, dry, beaked drupe surrounded by a teardrop-shaped two- winged membrane that hangs by a slender peduncle approximately the length of the 2O long fruit; fruits progress from a bright fleshy green to mature a tan or light brown color; old fruit are often persist throughout the winter. Stem / Bark: Stems — young twigs are green maturing to gray-brown to brown; new twigs are slender becoming medium textured and lack the white streaks present on H. carolina; the spongy pith is sometimes chambered; Buds — the reddish brown lateral buds are elongated, ovoid, and slightly divergent; Bark — bark of young trees is shallowly fissured into smooth silvery elongated plates; older trunks become vertically ridged and furrowed, mildly scaly, and sometimes almost corky in old age, mature bark is red-brown to gray-brown in color.
    [Show full text]
  • Styracaceae.Publishe
    Flora of China 15: 253–271. 1996. STYRACACEAE 安息香科 an xi xiang ke Hwang Shu-mei1; James Grimes2 Trees or shrubs, usually stellate pubescent or scaly, rarely glabrous. Leaves usually alternate, simple; stipules absent or very minute. Inflorescences terminal or axillary, racemes, panicles, or cymes, rarely 1-flowered or in several-flowered fascicles; bracteoles minute or absent. Flowers bisexual, rarely polygamodioecious, actinomorphic. Calyx campanulate, obconical, or cupular; tube completely or partially adnate to ovary; teeth or lobes 4 or 5(or 6), sometimes very small or obsolete. Corolla mostly white, gamopetalous; lobes (4 or)5(–7), basally ± connate, rarely free, imbricate or valvate, rarely slightly induplicate. Stamens 2 × or sometimes as many as corolla lobes, inserted at base of corolla; filaments mostly flattened, partially or completely connate at base into a tube; anthers introrse, 2-locular, opening by longitudinal slits. Ovary superior, half-inferior, or inferior, 3–5-locular or apically 1-locular and basally 3–5-locular; ovules few or 1 in each locule, erect, pendulous, or anatropous, integuments 1 or 2; placentation axile or parietal. Style slender, linear or subulate; stigma truncate, capitate or 2–5-lobed. Fruit a berry, drupe, or capsule, exocarp fleshy to dry. Seeds sometimes winged, often with a broad hilum; embryo straight or slightly curved; endosperm copious; cotyledons flattened or subterete. Eleven genera and ca. 180 species: tropical and temperate America, Asia, and Mediterranean; 10 genera (two endemic) and 54 species (32 endemic) in China. Hwang Shu-mei in Wu Young-fen & Hwang Shu-mei, eds. 1987. Styracaceae. Fl. Reipubl. Popularis Sin. 60(2): 77–150.
    [Show full text]
  • Beledġye Sinirlari Diġinda
    I - GENEL BĠLGĠLER A - Misyon / Vizyon Misyon : Sahip olduğu kaynakları etkin bir biçimde kullanıp, yöre halkının beklentilerine uygun kaliteli hizmetler sunarak kırsal ve kentsel kalkınmayı sağlamaktır. Vizyon : Kütahya ili sınırlarında yaĢayan herkesin gurur duyacağı, değiĢimin öncüsü, ülkemizin lider yerel yönetimlerinden birisi, Avrupa Birliği standartlarında hizmet üreten model bir kuruluĢ olmak. B – YETKĠ, GÖREV ve SORUMLULUKLARI AĢağıda ayrıntılı olarak görüleceği gibi, 5302 sayılı yasa ile Ġl Özel Ġdarelerine önemli görevler verilmiĢtir. ĠL SINIRLARI ĠÇĠNDE BELEDĠYE SINIRLARI DIġINDA -Gençlik ve Spor -Ġmar -Sağlık -Yol -Tarım - Su -Sanayi ve Ticaret - Kanalizasyon -Ġl Çevre Düzeni Planı - Katı Atık -Bayındırlık ve Ġskan - Çevre -Toprak Korunması, Erozyonun Önlenmesi - Acil Yardım ve Kurtarma - Kültür, Sanat, Turizm - Orman Köylerinin Desteklenmesi -Sosyal Hizmetler ve Yardımlar - Ağaçlandırma -Yoksullara Mikro Kredi Verilmesi - Park ve Bahçe Tesisi -Çocuk Yuvaları ve YetiĢtirme Yurtları Yapılması -Ġlk ve Ortaöğretim Kurumlarına Arsa Temini -Okul Binalarının Yapım Bakım ve Onarımı Ġle Diğer Ġhtiyaçlarının KarĢılanması -Emniyet Hizmetlerine Techizat Alımı C – ĠDAREYE ĠLĠġKĠN BĠLGĠLER 1-Fiziksel Yapı : a- Ana Hizmet Binaları: Mülkiyeti Ġl Özel Ġdaresine ait AlipaĢa Mahallesi Lise Caddesinde 3.200 M2 alan içerisinde Bodrum+Zemin+1 katlı hizmet binası ile Yenidoğan Mahallesinde 35.000 M2 alan üzerinde makine ikmal, depo, tamir atölyeleri ve zemin+1 katlı hizmet binasında faaliyetlerini yürütmektedir. b- 12 Ġlçe Özel idare hizmet binaları: Bütün Ġlçelerimizde mülkiyeti Ġl Özel Ġdaresine ait hizmet binaları mevcuttur. c- Bakım Evleri:Ġlimiz Emet, Gediz, ve Simav Ġlçelerinde Bakım Evleri Bulunmaktadır. 1 2 – Örgüt Yapısı KÜTAHYA ĠL ÖZEL ĠDARESĠ VALĠ Meclis Encümen GENEL SEKRETER ANA HĠZMET DANIġMA VE DENETĠM YARDIMCI BĠRĠMLER BAĞLI BĠRĠMLER BĠRĠMLERĠ BĠRĠMLERĠ 1-Yazı ĠĢleri Müdürlüğü 1-SözleĢmeli Avukat 1- Ġnsan Kay.ve Eğt.Müd.
    [Show full text]
  • Second Millennium Site Distribution and Pottery of Inland Northwestern Anatolia
    Anatolia Antiqua Revue internationale d'archéologie anatolienne XXIV | 2016 Varia Second Millennium Site Distribution and Pottery of Inland Northwestern Anatolia Turan Efe and Bérengère Perello Electronic version URL: http://journals.openedition.org/anatoliaantiqua/371 DOI: 10.4000/anatoliaantiqua.371 Publisher IFEA Printed version Date of publication: 1 May 2016 Number of pages: 35-89 ISBN: 9782362450648 ISSN: 1018-1946 Electronic reference Turan Efe and Bérengère Perello, “Second Millennium Site Distribution and Pottery of Inland Northwestern Anatolia”, Anatolia Antiqua [Online], XXIV | 2016, Online since 11 December 2018, connection on 16 February 2021. URL: http://journals.openedition.org/anatoliaantiqua/371 ; DOI: https://doi.org/10.4000/anatoliaantiqua.371 Anatolia Antiqua TABLE DES MATIERES Ergul KODAS, Le surmodelage du crâne au Néolithique au Proche-Orient : techniques de surmodelage et expérimentations 1 Isabella CANEVA et Eric JEAN, Mersin-Yumuktepe : une mise au point sur les derniers travaux 13 Turan EFE et Bérengère PERELLO, Second Millenium site distribution and pottery of Inland Northwestern Anatolia 35 Antoine PEREZ, Amida 6 : Antiochos IV, le ‟Hanigalbat” et la Sophène 91 Ergün LAFLI et Hadrien BRU, Inscriptions et monuments funéraires gréco-romains d’Anatolie occidentale 103 Oğuz TEKİN et Aliye EROL-ÖZDİZBAY, Coins from Allianoi excavations: Campaign of 2001 117 Nuran ŞAHİN, Etude iconographique des monnaies autonomes frappées par Colophon-sur-Mer : nouveaux acquis 147 Vera SAUER, Konventionelle Individualität. Zur
    [Show full text]