Diptera, Syrphidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acta Botanica Brasilica - 35(1): 46-61
Acta Botanica Brasilica - 35(1): 46-61. January-March 2021. doi: 10.1590/0102-33062020abb0236 Breaking the misconception of a dry and lifeless semiarid region: the diversity and distribution of aquatic flora in wetlands of the Brazilian Northeast Lígia Queiroz Matias1* , Felipe Martins Guedes2 , Hugo Pereira do Nascimento1 and Júlia Caram Sfair1 Received: May 19, 2020 Accepted: November 19, 2020 . ABSTRACT The semiarid region of northeastern Brazil possesses a set of wetlands characterized by hydrographic basins with deficient drainage networks, a few large and permanent lotic systems and several permanent and temporary lagoons. Aquatic plants are widely distributed in these wetlands and the present study aims to determine if those of Ceará state have similar species compositions and differences in species richness. We hypothesized that lentic ecosystems would have more species and different growth forms of aquatic angiosperms than lotic ecosystems. A total of 1619 records of aquatic angiosperms in 43 wetland areas were analysed. The most representative families were Cyperaceae, Poaceae, Fabaceae, Alismataceae, Malvaceae, Nymphaeaceae and Pontederiaceae. Most of the species are helophytes and bottom-rooted emergent hydrophytes. Permanent lentic ecosystems had the highest number of exclusive species (27.85 %), followed by temporary lentic ecosystems (20.54 %). Contrary to our hypothesis, the different aquatic ecosystems were found to possess distinct species compositions and different proportions of growth forms, and all wetland types contributed to the macrophyte richness of the study area, although they differ in species richness. Therefore, conservation plans for the native aquatic macrophyte biota should include all wetland ecosystems in the semiarid state of Ceará. Keywords: biodiversity, floristic richness, hydrophytes, macrophytes, seasonal aquatic ecosystems significantly during the rainy season according to the stage Introduction of flooding (Ferreira et al. -
Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families. -
Is the Mega-Diverse Genus Ocyptamus (Diptera, Syrphidae) Monophyletic
Molecular Phylogenetics and Evolution 62 (2012) 191–205 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Is the mega-diverse genus Ocyptamus (Diptera, Syrphidae) monophyletic? Evidence from molecular characters including the secondary structure of 28S rRNA ⇑ Ximo Mengual a,c, , Gunilla Ståhls b, Santos Rojo c a Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC-0169, Washington, DC 20013-7012, USA b Zoological Unit, Finnish Museum of Natural History, PO Box 17, FIN-00014 University of Helsinki, Finland c Instituto Universitario CIBIO – Dpto. de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain article info abstract Article history: Phylogenetic relationships between two New World Syrphinae taxa (Diptera, Syrphidae), i.e. the highly Received 17 March 2011 diverse genus Ocyptamus and the large genus Toxomerus, were analysed based on molecular characters. Revised 17 August 2011 The monophyly of both taxa was tested and the taxonomic status of included subgenera and species Accepted 23 September 2011 groups was examined. Toxomerus constitutes the monogeneric tribe Toxomerini with more than 140 Available online 29 September 2011 described species, while Ocyptamus (tribe Syrphini) is a very diverse genus (over 300 spp.) with multiple recognised subgenera and species groups. Sequence data from three gene regions were used: the mito- Keywords: chondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribo- Toxomerus somal RNA genes. The secondary structure of two expansion segments (D2, D3) of the ribosomal 28S Ocyptamus Monophyly RNA gene is presented for the family Syrphidae and used for the first time in a multiple sequence align- Syrphidae ment. -
A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion. -
First Report of Toxomerus Dispar (Fabricius, 1794) (Diptera: Syrphidae) Preying Spodoptera Frugiperda (J.E
http://dx.doi.org/10.1590/1519-6984.18315 Notes and Comments First report of Toxomerus dispar (Fabricius, 1794) (Diptera: Syrphidae) preying Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) in laboratory T. A. Camposa, T. E. Uedaa, D. M. Zirondi Filhoa, O. C. Bortolottoa*, A. Pasinia and M. N. Moralesb aDepartamento de Agronomia, Universidade Estadual de Londrina – UEL, Rodovia Celso Garcia Cid, Pr 445m 380, CP 10011, CEP 86057-970, Londrina, PR, Brazil bDepartamento de Entomologia, Universidade Federal de Lavras – UFLA, CP 3037, CEP 37200-000, Lavras, MG, Brazil *e-mail: [email protected] Received: November 6, 2015 – Accepted: February 16, 2016 – Distributed: May 31, 2017 (With 1 figure) The fall armyworm Spodoptera frugiperda (Smith, 1797) to feed aphids until they reach the third-instar stage (due to (Lepidoptera: Noctuidae) is one of the most important pests the high aggressivity of S. frugiperda against newly in Brazilian maize fields that causes damage to approximately hatched hoverfly larvae). Thereafter, first and second instar 57% of the crop (Cruz et al., 1999). However, several S. frugiperda caterpillars (obtained from the Laboratory of biological control agents occur freely in agroecosystems Embrapa Soybean, Londrina, PR, Brazil) were provided and are known to suppress the S. frugiperda population ad libitum as feed to hoverfly larvae (Figure 1), until they (Dequech et al., 2004; Bortolotto et al., 2014). Among the reached the pupal stage or died. predator insects, hoverflies have been reported to occur in Toxomerus dispar larvae consumed two caterpillars maize fields but are usually associated with aphid infestation in 24 h, on average, and the larval viability was found to (Swaminathan et al., 2015). -
Taxonomic Enumeration of Angiosperm Flora of Sreenagar Upazila, Munshigang, Dhaka, Bangladesh
J. Asiat. Soc. Bangladesh, Sci. 43(2): 161-172, December 2017 TAXONOMIC ENUMERATION OF ANGIOSPERM FLORA OF SREENAGAR UPAZILA, MUNSHIGANG, DHAKA, BANGLADESH ZAKIA MAHMUDAH, MD. MUZAHIDUL ISLAM, TAHMINA HAQUE AND MOHAMMAD ZASHIM UDDIN1 Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh Abstract The present article focuses the status of angiosperm flora of Sreenagar upazila under Munshiganj district. The study was done from July 2015 to June 2016. A total of 219 plant species of angiosperms was identified belonging to 165 genera and 70 families. Among them 38 species were monocotyledons and 181 plant species were dicotyledons. Herbs were the largest life forms among the angiosperms and contained about 58% of total plant species occurring in this area. Trees and shrubs occupied 23% and 12% respectively. Climbers were 6% but epiphytes (1%) were very negligible in number in the study area. About 51 medicinal plants were recorded from this study. The following species viz. Lasia spinosa, Calamus tenuis, Tinospora crispa, Passiflora foetida and Calotropis procera were recorded only once and hence considered as rare species in Sreenagar upazila. An invasive poisonous plant Parthenium hysterophorus was also found in Sreenagar. Key words: Diversity, Angiosperm flora, Sreenagar, Munshiganj district Introduction Sreenagar is an upazila under Munshiganj district situated on the bank of ‘Padma’ river. It is a part of Dhaka division, located in between 23°27' and 23°38' north latitudes and in between 90°10' and 90°22' east longitudes. The total area is 202, 98 square kilometer and bounded by Serajdikhan and Nawabganj upazilas on the north, Lohajong and Shibchar upazilas on the south, Serajdikhan and Nawabganj and Dohar upazilas on the west. -
Tropical Forages
Tropical Forages Hymenachne amplexicaulis Scientific name Hymenachne amplexicaulis (Rudge) Nees Synonyms Aquatic or sub-aquatic perennial with coarse culms Leaves to >3cm wide with stem- Basionym: Panicum amplexicaule Rudge clasping auricles at base Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Paspaleae subtribe: Otachyriinae. Morphological description A perennial, stoloniferous/rhizomatous grass, with robust, erect or ascending culms 1–2.5 m high and to Aquatic culm with nodal rooting (cv. >12 mm thick, and prostrate stems that run on wet Olive) ground, or float on water, developing adventitious roots. Stems glabrous, pithy. Leaves glossy green in colour, Inflorescence a narrow spike-like largely glabrous; sheaths often spongy; blades mostly panicle linear-lanceolate, 10–45 cm long and to >3 cm wide, cordate, auriculate and clasping at base; ligule an eciliate membrane, 1–2.5 mm long. Panicle narrow, spikelike, cylindrical, 20–50 cm long, 1–2 cm across, sometimes with 2 to a few long, upright branches. Spikelets lanceolate, dorsi-ventrally compressed, upright, 3–4 (–5) mm long and 1 mm diameter; c. 2.3 million seeds/kg. Caryopsis ellipsoid, easily detached, 1–2 mm long and 0.6 mm diameter. Prolific seed production Note: Morphologically similar to, but distinct from Hymenachne acutigluma (Steud.) Gilliland, which is native to Continental Asia, Malesia and Australasia. Leaves and inflorescence Similar species H. amplexicaulis: leaf base cordate-auriculate, stem- clasping (amplexicaul). H. acutigluma (Steud.) Gilliland (syn. Hymenachne pseudointerrupta Müll. Hal.): leaf base rounded to sub- cordate. Native to S and SE Asia, and northern Australia. Checking maturity in seed production Common names area (cv. -
Assessment of Biodiversity Loss Along the Flood and Landslide-Hit Areas of Attappady Region, Palakkad District, Using Geoinformatics
ASSESSMENT OF BIODIVERSITY LOSS ALONG THE FLOOD AND LANDSLIDE-HIT AREAS OF ATTAPPADY REGION, PALAKKAD DISTRICT, USING GEOINFORMATICS Report submitted To Kerala State Biodiversity Board, Thiruvananthapuram. Submitted By Government College Chittur, Palakkad. Project summary Assessment of biodiversity loss along the flood and 1 Title landslide-hit areas of Attappady region, Palakkad district using geoinformatics. Kerala State Biodiversity Board 2 Project funded by L-14, Jai Nagar Medical College P.O. Thiruvananthapuram-695 011 3 Project period January 2019 – March 2019 Dr. Richard Scaria (Principal Investigator) Sojan Jose (Co-Investigator) Aswathy R. (Project Fellow - Zoology) Smitha P.V. (Project Fellow - Botany) Vincy V. (Project Fellow - Geography) 4 Project team Athulya C. (Technical Assistant - Zoology) Jency Joy (Technical Assistant - Botany) Ranjitha R. (Technical Assistant - Botany) Krishnakumari K. (Technical Assistant - Botany) Hrudya Krishnan K. (Technical Assistant - Botany) Identification of the geographical causes of flood and landslides in Attappady. Construction of maps of flood and landslide-hit areas and susceptible zones. Proposal of effective land use plans for the mitigation of flood and landslides. 5 Major outcomes Estimation of damages due to landslides and flood. Assessment of the biodiversity loss caused by flood and landslides. Diversity study of major floral and faunal categories. Post flood analysis of soil fertility variation in riparian zones. Prof. Anand Viswanath. R Dr. Richard Scaria Sojan Jose Principal, (Principal Investigator) (Co-Investigator) Govt. College, Chittur, Department of Geography, Department of Botany, Palakkad. Govt. College, Chittur, Govt. College, Chittur, Palakkad. Palakkad. 1. Introduction Biodiversity is the immense variety and richness of life on Earth which includes different animals, plants, microorganisms etc. -
Baccha (Ocyptamus) Medina, B
The Syrphidae of Puerto Rico1'2 H. S. Telford3-* One cannot state with certainty when the first syrphid was collected from Puerto Rico and adjacent islands. Fabricius described a number of 1 Manuscript submitted to Editorial Board October 30, 1972. 2 Scientific paper number 3914. College of Agriculture Research Center, Washing ton State University, Pullman, Washington. Work was conducted under Project No. 0046. 3 Professor and Entomologist, Department of Entomology, Washington State University; Visiting Scientist, Department of Entomology, Agricultural Experiment Station, Mayagiiez Campus, Uío Piedras, Puerto Rico, September 1968-March 1969. This study was made possible by financial support from the Department of En tomology, Agricultural Experiment Station, Mayagiiez Campus, University of Puerto Rico, Río Piedras. I wish to thank Dr. L. P. R. F. Martorell, formerly Chairman, Department of Entomology, Agricultural Experiment Station, especially for his support and aid in all aspects of the project. Mr. Silverio Medina Gaud, Associate Entomologist, Agricultural Experiment Station, was of considerable help. He ac companied me on almost all field trips, assisted in sorting and preparing the material and made valuable field trips on his own. Dr. J. R. Vockeroth, Entomology Research Institute, Ottawa, Canada, verified many determinations and offered advice on nomenclatural problems. Others who materially aided in the loan of specimens, verified determinations or in other ways were: Dr. George Drury, U.S. Atomic Energy Commission, El Verde-Caribbean National Forest, Puerto Rico; Dr. Y. S. Sedman, Western Illinois University; Dr. L. V. Knutson, Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture; Dr. P. W. Wygodzinsky, American Museum of Natural History; Dr. -
E0020 Common Beneficial Arthropods Found in Field Crops
Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents. -
Syrphidae of Southern Illinois: Diversity, Floral Associations, and Preliminary Assessment of Their Efficacy As Pollinators
Biodiversity Data Journal 8: e57331 doi: 10.3897/BDJ.8.e57331 Research Article Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators Jacob L Chisausky‡, Nathan M Soley§,‡, Leila Kassim ‡, Casey J Bryan‡, Gil Felipe Gonçalves Miranda|, Karla L Gage ¶,‡, Sedonia D Sipes‡ ‡ Southern Illinois University Carbondale, School of Biological Sciences, Carbondale, IL, United States of America § Iowa State University, Department of Ecology, Evolution, and Organismal Biology, Ames, IA, United States of America | Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada ¶ Southern Illinois University Carbondale, College of Agricultural Sciences, Carbondale, IL, United States of America Corresponding author: Jacob L Chisausky ([email protected]) Academic editor: Torsten Dikow Received: 06 Aug 2020 | Accepted: 23 Sep 2020 | Published: 29 Oct 2020 Citation: Chisausky JL, Soley NM, Kassim L, Bryan CJ, Miranda GFG, Gage KL, Sipes SD (2020) Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators. Biodiversity Data Journal 8: e57331. https://doi.org/10.3897/BDJ.8.e57331 Abstract Syrphid flies (Diptera: Syrphidae) are a cosmopolitan group of flower-visiting insects, though their diversity and importance as pollinators is understudied and often unappreciated. Data on 1,477 Syrphid occurrences and floral associations from three years of pollinator collection (2017-2019) in the Southern Illinois region of Illinois, United States, are here compiled and analyzed. We collected 69 species in 36 genera off of the flowers of 157 plant species. While a richness of 69 species is greater than most other families of flower-visiting insects in our region, a species accumulation curve and regional species pool estimators suggest that at least 33 species are yet uncollected. -
Merrimac Farm WMA Insect List As of September 2014 Order Family
Merrimac Farm WMA Insect List as of September 2014 Order Family Common Name Scientific Name Acari Ixodidae American Dog Tick Dermacentor variabilis Araneae Anyphaenidae Ghost Spider Hibana sp. Araneae Araneidae Larinia directa Larinia directa Araneae Araneidae Star-bellied Orbweaver Acanthepeira stellata Araneae Araneidae White Micrathena Micrathena mitrata Araneae Araneidae Spined Micrathena Micrathena gracilis Araneae Lycosidae Wolf Spider Hogna sp. Araneae Lycosidae Thin-legged Wolf Spider Pardosa sp. Araneae Lycosidae Rabid Wolf Spider Rabidosa rabida Araneae Oxyopidae Lynx Spider Oxyopes aglossus Araneae Salticidae Jumping Spider Pelegrina proterva? Araneae Salticidae Jumping Spider Phidippus princeps Araneae Salticidae Jumping Spider Tutellina elegans Araneae Salticidae Peppered Jumper Pelegrina galathea Araneae Thomisidae Northern Crab Spider Mecaphesa asperata Araneae Thomisidae Swift Crab Spider Mecaphesa celer Araneae Thomisidae White-banded Crab Spider Misumenoides formosipes Blattodea Cryptocercidae Brown-hooded Cockroach Cryptocercus punctulatus Coleoptera Cantharidae Margined Leatherwing Chauliognathus marginatus Coleoptera Cantharidae Soldier Beetle Podabrus rugosulus Coleoptera Carabidae Vivid Metallic Ground Beetle Chlaenius sp. Coleoptera Carabidae Vivid Metallic Ground Beetle Chlaenius emarginatus Coleoptera Carabidae Six-spotted Tiger Beetle Cicindela sexguttata Coleoptera Cerambycidae Flower Longhorn Beetle Strangalia luteicornis Coleoptera Cerambycidae Locust Borer Megacyllene robiniae Coleoptera Cerambycidae Red