A Practical Introduction to Differential Forms William C. Schulz Alexia E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1507.07356V2 [Math.AP]
TEN EQUIVALENT DEFINITIONS OF THE FRACTIONAL LAPLACE OPERATOR MATEUSZ KWAŚNICKI Abstract. This article discusses several definitions of the fractional Laplace operator ( ∆)α/2 (α (0, 2)) in Rd (d 1), also known as the Riesz fractional derivative − ∈ ≥ operator, as an operator on Lebesgue spaces L p (p [1, )), on the space C0 of ∈ ∞ continuous functions vanishing at infinity and on the space Cbu of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner’s subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain. 1. Introduction We consider the fractional Laplace operator L = ( ∆)α/2 in Rd, with α (0, 2) and d 1, 2, ... Numerous definitions of L can be found− in− literature: as a Fourier∈ multiplier with∈{ symbol} ξ α, as a fractional power in the sense of Bochner or Balakrishnan, as the inverse of the−| Riesz| potential operator, as a singular integral operator, as an operator associated to an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semigroup of contractions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic extension problem. Equivalence of these definitions for sufficiently smooth functions is well-known and easy. The purpose of this article is to prove that, whenever meaningful, all these definitions are equivalent in the Lebesgue space L p for p [1, ), ∈ ∞ in the space C0 of continuous functions vanishing at infinity, and in the space Cbu of bounded uniformly continuous functions. -
MULTIVARIABLE CALCULUS (MATH 212 ) COMMON TOPIC LIST (Approved by the Occidental College Math Department on August 28, 2009)
MULTIVARIABLE CALCULUS (MATH 212 ) COMMON TOPIC LIST (Approved by the Occidental College Math Department on August 28, 2009) Required Topics • Multivariable functions • 3-D space o Distance o Equations of Spheres o Graphing Planes Spheres Miscellaneous function graphs Sections and level curves (contour diagrams) Level surfaces • Planes o Equations of planes, in different forms o Equation of plane from three points o Linear approximation and tangent planes • Partial Derivatives o Compute using the definition of partial derivative o Compute using differentiation rules o Interpret o Approximate, given contour diagram, table of values, or sketch of sections o Signs from real-world description o Compute a gradient vector • Vectors o Arithmetic on vectors, pictorially and by components o Dot product compute using components v v v v v ⋅ w = v w cosθ v v v v u ⋅ v = 0⇔ u ⊥ v (for nonzero vectors) o Cross product Direction and length compute using components and determinant • Directional derivatives o estimate from contour diagram o compute using the lim definition t→0 v v o v compute using fu = ∇f ⋅ u ( u a unit vector) • Gradient v o v geometry (3 facts, and understand how they follow from fu = ∇f ⋅ u ) Gradient points in direction of fastest increase Length of gradient is the directional derivative in that direction Gradient is perpendicular to level set o given contour diagram, draw a gradient vector • Chain rules • Higher-order partials o compute o mixed partials are equal (under certain conditions) • Optimization o Locate and -
A Brief Tour of Vector Calculus
A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0. -
Curl, Divergence and Laplacian
Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1. -
Laplace Transforms: Theory, Problems, and Solutions
Laplace Transforms: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 43 The Laplace Transform: Basic Definitions and Results 3 44 Further Studies of Laplace Transform 15 45 The Laplace Transform and the Method of Partial Fractions 28 46 Laplace Transforms of Periodic Functions 35 47 Convolution Integrals 45 48 The Dirac Delta Function and Impulse Response 53 49 Solving Systems of Differential Equations Using Laplace Trans- form 61 50 Solutions to Problems 68 2 43 The Laplace Transform: Basic Definitions and Results Laplace transform is yet another operational tool for solving constant coeffi- cients linear differential equations. The process of solution consists of three main steps: • The given \hard" problem is transformed into a \simple" equation. • This simple equation is solved by purely algebraic manipulations. • The solution of the simple equation is transformed back to obtain the so- lution of the given problem. In this way the Laplace transformation reduces the problem of solving a dif- ferential equation to an algebraic problem. The third step is made easier by tables, whose role is similar to that of integral tables in integration. The above procedure can be summarized by Figure 43.1 Figure 43.1 In this section we introduce the concept of Laplace transform and discuss some of its properties. The Laplace transform is defined in the following way. Let f(t) be defined for t ≥ 0: Then the Laplace transform of f; which is denoted by L[f(t)] or by F (s), is defined by the following equation Z T Z 1 L[f(t)] = F (s) = lim f(t)e−stdt = f(t)e−stdt T !1 0 0 The integral which defined a Laplace transform is an improper integral. -
Numerical Methods in Multiple Integration
NUMERICAL METHODS IN MULTIPLE INTEGRATION Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY WAYNE EUGENE HOOVER 1977 LIBRARY Michigan State University This is to certify that the thesis entitled NUMERICAL METHODS IN MULTIPLE INTEGRATION presented by Wayne Eugene Hoover has been accepted towards fulfillment of the requirements for PI; . D. degree in Mathematics w n A fl $11 “ W Major professor I (J.S. Frame) Dag Octdber 29, 1976 ., . ,_.~_ —- (‘sq I MAY 2T3 2002 ABSTRACT NUMERICAL METHODS IN MULTIPLE INTEGRATION By Wayne Eugene Hoover To approximate the definite integral 1:" bl [(1):] f(x1"”’xn)dxl”'dxn an a‘ over the n-rectangle, n R = n [41, bi] , 1' =1 conventional multidimensional quadrature formulas employ a weighted sum of function values m Q“) = Z ij(x,'1:""xjn)- i=1 Since very little is known concerning formulas which make use of partial derivative data, the objective of this investigation is to construct formulas involving not only the traditional weighted sum of function values but also partial derivative correction terms with weights of equal magnitude and alternate signs at the corners or at the midpoints of the sides of the domain of integration, R, so that when the rule is compounded or repeated, the weights cancel except on the boundary. For a single integral, the derivative correction terms are evaluated only at the end points of the interval of integration. In higher dimensions, the situation is somewhat more complicated since as the dimension increases the boundary becomes more complex. Indeed, in higher dimensions, most of the volume of the n-rectande lies near the boundary. -
4.1 Discrete Differential Geometry
Spring 2015 CSCI 599: Digital Geometry Processing 4.1 Discrete Differential Geometry Hao Li http://cs599.hao-li.com 1 Outline • Discrete Differential Operators • Discrete Curvatures • Mesh Quality Measures 2 Differential Operators on Polygons Differential Properties! • Surface is sufficiently differentiable • Curvatures → 2nd derivatives 3 Differential Operators on Polygons Differential Properties! • Surface is sufficiently differentiable • Curvatures → 2nd derivatives Polygonal Meshes! • Piecewise linear approximations of smooth surface • Focus on Discrete Laplace Beltrami Operator • Discrete differential properties defined over (x) N 4 Local Averaging Local Neighborhood ( x ) of a point !x N • often coincides with mesh vertex vi • n-ring neighborhood ( v ) or local geodesic ball Nn i 5 Local Averaging Local Neighborhood ( x ) of a point !x N • often coincides with mesh vertex vi • n-ring neighborhood ( v ) or local geodesic ball Nn i Neighborhood size! • Large: smoothing is introduced, stable to noise • Small: fine scale variation, sensitive to noise 6 Local Averaging: 1-Ring (x) N x Barycentric cell Voronoi cell Mixed Voronoi cell (barycenters/edgemidpoints) (circumcenters) (circumcenters/midpoint) tight error bound better approximation 7 Barycentric Cells Connect edge midpoints and triangle barycenters! • Simple to compute • Area is 1/3 o triangle areas • Slightly wrong for obtuse triangles 8 Mixed Cells Connect edge midpoints and! • Circumcenters for non-obtuse triangles • Midpoint of opposite edge for obtuse triangles • Better approximation, -
A Doubly Nonlocal Laplace Operator and Its Connection to the Classical Laplacian Petronela Radu University of Nebraska - Lincoln, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Mathematics Mathematics, Department of 2019 A Doubly Nonlocal Laplace Operator and Its Connection to the Classical Laplacian Petronela Radu University of Nebraska - Lincoln, [email protected] Kelseys Wells University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub Part of the Applied Mathematics Commons, and the Mathematics Commons Radu, Petronela and Wells, Kelseys, "A Doubly Nonlocal Laplace Operator and Its Connection to the Classical Laplacian" (2019). Faculty Publications, Department of Mathematics. 215. https://digitalcommons.unl.edu/mathfacpub/215 This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A DOUBLY NONLOCAL LAPLACE OPERATOR AND ITS CONNECTION TO THE CLASSICAL LAPLACIAN PETRONELA RADU, KELSEY WELLS Abstract. In this paper, motivated by the state-based peridynamic frame- work, we introduce a new nonlocal Laplacian that exhibits double nonlocality through the use of iterated integral operators. The operator introduces addi- tional degrees of flexibility that can allow for better representation of physical phenomena at different scales and in materials with different properties. We study mathematical properties of this state-based Laplacian, including connec- tions with other nonlocal and local counterparts. Finally, we obtain explicit rates of convergence for this doubly nonlocal operator to the classical Laplacian as the radii for the horizons of interaction kernels shrink to zero. 1. Introduction Physical phenomena that are beset by discontinuities in the solution, or in the domain, have been challenging to study in the context of classical partial differen- tial equations (PDEs). -
The Electrostatic Potential Is the Coulomb Integral Transform of the Electric Charge Density Revista Mexicana De Física, Vol
Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Medina, L.; Ley Koo, E. Mathematics motivated by physics: the electrostatic potential is the Coulomb integral transform of the electric charge density Revista Mexicana de Física, vol. 54, núm. 2, diciembre, 2008, pp. 153-159 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57028302013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ENSENANZA˜ REVISTA MEXICANA DE FISICA´ E 54 (2) 153–159 DICIEMBRE 2008 Mathematics motivated by physics: the electrostatic potential is the Coulomb integral transform of the electric charge density L. Medinaa and E. Ley Koo a;b aFacultad de Ciencias, Universidad Nacional Autonoma´ de Mexico,´ Ciudad Universitaria, Mexico´ D.F., 04510, Mexico,´ e-mail: [email protected], bInstituto de F´ısica, Universidad Nacional Autonoma´ de Mexico,´ Apartado Postal 20-364, 01000 Mexico D.F., Mexico, e-mail: eleykoo@fisica.unam.mx Recibido el 19 de octubre de 2007; aceptado el 11 de marzo de 2007 This article illustrates a practical way to connect and coordinate the teaching and learning of physics and mathematics. The starting point is the electrostatic potential, which is obtained in any introductory course of electromagnetism from the Coulomb potential and the superposition principle for any charge distribution. The necessity to develop solutions to the Laplace and Poisson differential equations is also recognized, identifying the Coulomb potential as the generating function of harmonic functions. -
Multiple Integrals
Chapter 11 Multiple Integrals 11.1 Double Riemann Sums and Double Integrals over Rectangles Motivating Questions In this section, we strive to understand the ideas generated by the following important questions: What is a double Riemann sum? • How is the double integral of a continuous function f = f(x; y) defined? • What are two things the double integral of a function can tell us? • Introduction In single-variable calculus, recall that we approximated the area under the graph of a positive function f on an interval [a; b] by adding areas of rectangles whose heights are determined by the curve. The general process involved subdividing the interval [a; b] into smaller subintervals, constructing rectangles on each of these smaller intervals to approximate the region under the curve on that subinterval, then summing the areas of these rectangles to approximate the area under the curve. We will extend this process in this section to its three-dimensional analogs, double Riemann sums and double integrals over rectangles. Preview Activity 11.1. In this activity we introduce the concept of a double Riemann sum. (a) Review the concept of the Riemann sum from single-variable calculus. Then, explain how R b we define the definite integral a f(x) dx of a continuous function of a single variable x on an interval [a; b]. Include a sketch of a continuous function on an interval [a; b] with appropriate labeling in order to illustrate your definition. (b) In our upcoming study of integral calculus for multivariable functions, we will first extend 181 182 11.1. -
Nonlocal Exterior Calculus on Riemannian Manifolds
The Pennsylvania State University The Graduate School Department of Mathematics NONLOCAL EXTERIOR CALCULUS ON RIEMANNIAN MANIFOLDS A Dissertation in Mathematics by Thinh Duc Le c 2013 Thinh Duc Le Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 ii The dissertation of Thinh Duc Le was reviewed and approved* by the following: Qiang Du Verne M. Willaman Professor of Mathematics Dissertation Adviser Chair of Committee Long-Qing Chen Distinguished Professor of Material Sciences and Engineering Ping Xu Distinguished Professor of Mathematics Mathieu Stienon Associate Professor of Mathematics Svetlana Katok Director of Graduate Studies, Department of Mathematics *Signatures are on file in the Graduate School. iii Abstract Exterior calculus and differential forms are basic mathematical concepts that have been around for centuries. Variations of these concepts have also been made over the years such as the discrete exterior calculus and the finite element exterior calculus. In this work, motivated by the recent studies of nonlocal vector calculus we develop a nonlocal exterior calculus framework on Riemannian manifolds which mimics many properties of the standard (local/smooth) exterior calculus. However the key difference is that nonlocal \interactions" (functions, operators, fields,...) are not required to be smooth. Also any point/particle can interact directly with any other point/particle in the studied domain (at least in principle). Just as in the standard context, we introduce all necessary elements of exterior calculus such as forms, vector fields, exterior derivatives, etc. We point out the relationships between these elements with the known ones in (local) exterior calcu- lus, discrete exterior calculus, etc. -
Two-Dimensional Differential Operators
Appendix E Two-dimensional differential operators E.1 The del-operator in two dimensions When we deal with scalar fields that do not depend on the third coordinate or with vector fields in which the third component is zero and the other two depend only on the first two coordinates, then it is expedient to introduce the horizontal del-operator ∂ ∂ ∂ ∂ ∇H = i + j = , . ∂x ∂y ∂x ∂y ! By means of this operator we can construct the horizontal gradient of a two- dimensional scalar field φ = φ(x, y) uH = ∇H φ, and the divergence of a two-dimensional vector field uH =(ux, uy) ∂ux ∂uy ξH = ∇H · uH =(∂x, ∂y) · (ux, uy) = + . ∂x ∂y 1041 1042 Franco Mattioli (University of Bologna) Analogously to the three-dimensional case, we introduce the two-dimensional Laplace operator ∂ ∂ ∂φ ∂φ ∂2φ ∂2φ ∇2 ∇ ·∇ · H φ = H H φ = , , = 2 + 2 . ∂x ∂y ! ∂x ∂y ! ∂x ∂y But for the curl is quite another matter. The curl, in fact, is an operator essentially three-dimensional. When applied to a two-dimensional vector field defined in a certain plane, it gives rise to a vector that does not belong to the same plane. This happens because it represents the velocity of rotation of the parcels (see problem [D.5]). If the motion occurs in a horizontal plane, it is clear that the angular velocity of the parcels must be vertical. So, we can define the vertical component of the curl as ∂u ∂u ζ = k · ∇ × u = y − x . H ∂x ∂y Similarly, the curl of a vector field defined in a vertical plane is a horizontal vector.